Algebras and Representation Theory

, Volume 11, Issue 1, pp 43–61 | Cite as

One Dimensional Tilting Modules are of Finite Type

  • Silvana Bazzoni
  • Dolors Herbera


We prove that every tilting module of projective dimension at most one is of finite type, namely that its associated tilting class is the Ext-orthogonal of a family of finitely presented modules of projective dimension at most one.


Tilting modules Finite type Ext-orthogonal 

Mathematics Subject Classifications (2000)

Primary 16D90 16E30 Secondary 16G99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angeleri Hügel, L., Coelho, F.U.: Infinitely generated tilting modules of finite projective dimension. Forum Math. 13, 239–250 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angeleri Hügel, L., Saorin, M.: Modules with perfect decompositions. Math. Scand. 98(1), 19–43 (2006)MathSciNetGoogle Scholar
  3. 3.
    Angeleri Hügel, L., Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings. Forum Math. 18, 217–235 (2006)CrossRefGoogle Scholar
  4. 4.
    Angeleri Hügel, L., Tonolo, A., Trlifaj, J.: Tilting preenvelopes and cotilting precovers. Algebr. Represent. Theory 4, 155–170 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Azumaya, G.: Finite splitness and projectivity. J. Algebra 106, 114–134 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc. 95, 466–488 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bazzoni, S.: Cotilting modules are pure-injective. Proc. Amer. Math. Soc. 131, 3665–3672 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bazzoni, S.: A characterization of n-cotilting and n-tilting modules. J. Algebra 273, 359–372 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bazzoni, S., Eklof, P., Trlifaj, J.: Tilting cotorsion pairs. Bull. London Math. Soc. 37, 683–696 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brenner, S., Butler, M.: Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. In: Proc. ICRA III. LNM, vol. 832, pp. 103–169. Springer, Berlin-Heidelberg-New York (1980)Google Scholar
  11. 11.
    Colby, R.R., Fuller, K.R.: Tilting, cotilting and serially tilted rings. Comm. Algebra 25(10), 3225–3237 (1997)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Colpi, R., Trlifaj, J.: Tilting modules and tilting torsion theories. J. Algebra 178, 614–634 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Crawley-Boevey, W.W.: Infinite-dimensional modules in the representation theory of finite-dimensional algebras. In: Algebras and modules, I (Trondheim, 1996), pp. 29–54. CMS Conf. Proc., vol. 23. American Mathematical Society Providence, RI (1998)Google Scholar
  14. 14.
    Eklof, P.C., Trlifaj, J.: How to make Ext vanish. Bull. London Math. Soc. 33, 41–51 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. Inst. Hautes Études Sci. 11, 5–167 (1961)CrossRefGoogle Scholar
  16. 16.
    Happel, D., Ringel, C.: Tilted algebras. Trans. Amer. Math. Soc. 215, 81–98 (1976)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Keisler, H.J.: Ultraproducts and elementary classes. Indag. Math. 23, 477–495 (1961)MathSciNetGoogle Scholar
  18. 18.
    Puninski, G.: When every projective module is a direct sum of finitely generated modules. Preprint available at (2004)
  19. 19.
    Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Invent. Math 13, 1–89 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Shelah, S.: Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math. 10, 224–233 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Weibel, C.A.: An introduction to homological algebra. In: Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)Google Scholar
  22. 22.
    Whitehead, J.M.: Projective modules and their trace ideals. Comm. Algebra 8(19), 1873–1901 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ziegler, M.: Model theory of modules. Ann. Pure Appl. Logic 26, 149–213 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zimmermann, W.: Π-projektive Moduln. J. Reine Angew. Math. 292, 117–124 (1977)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaPadovaItaly
  2. 2.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations