Algebras and Representation Theory

, Volume 9, Issue 3, pp 259–266 | Cite as

Modular Group Algebras with Almost Maximal Lie Nilpotency Indices

  • Victor BovdiEmail author
  • Tibor Juhász
  • Ernesto Spinelli


Let \(K\) be a field of positive characteristic \(p\) and \(KG\) the group algebra of a group \(G\). It is known that, if \(KG\) is Lie nilpotent, then its upper (and lower) Lie nilpotency index is at most \(|G^{\, \prime}|+1\), where \(|G^{\, \prime}|\) is the order of the commutator subgroup. The authors previously determined those groups \(G\) for which this index is maximal and here they determine the groups \(G\) for which it is `almost maximal', that is, it takes the next highest possible value, namely \(|G^{\, \prime}|-p+2\).

Key words

group algebras Lie nilpotency indices dimensional subgroups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhandari, A.K., Passi, I.B.S.: Lie nilpotency indices of group algebras. Bull. Lond. Math. Soc. 24, 68–70 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bovdi, A.A., Khripta, I.I.: Generalized Lie nilpotent group rings. (Russian) Math. USSR Sbornik 57(1), 165–169 (1987)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bovdi, A.A., Kurdics, J.: Lie properties of the group algebra and the nilpotency class of the group of units. J. Algebra 212, 28–64 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bovdi, V., Spinelli, E.: Modular group algebras with maximal Lie nilpotency indices. Publ. Math. (Debr.) 65/1–2, 243–252 (2004)MathSciNetGoogle Scholar
  5. 5.
    Burnside, W.: On some properties of groups whose orders are powers of primes. Proc. Lond. Math. Soc. 11(2), 225–245 (1913)CrossRefGoogle Scholar
  6. 6.
    Huppert, B.: Endliche gruppen I. Springer, Berlin Heidelberg New York (1967)zbMATHGoogle Scholar
  7. 7.
    Khripta, I.I.: The nilpotence of the multiplicative group of a group ring. (Russian) Mat. Zametki 11, 191–200 (1972)Google Scholar
  8. 8.
    Passi, I.B.S.: Group Rings and their augmentation ideals. Springer, Berlin Heidelberg New York (1979)zbMATHGoogle Scholar
  9. 9.
    Passi, I.B.S., Passman, D., Sehgal, S.K.: Lie solvable group rings. Can. J. Math. 25, 748–757 (1973)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Shalev, A.: Application of dimension and Lie dimension subgroups to modular group algebras. Proc. of the Amitsur Conference in Ring Theory, Jerusalem 85–94 (1989)Google Scholar
  11. 11.
    Shalev, A.: Lie dimension subgroups, Lie nilpotency indices and the exponent of the group of normalized units. J. Lond. Math. Soc. 43, 23–36 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Shalev, A.: The nilpotency class of the unit group of a modular group algebra III. Arch. Math. 60, 126–145 (1993)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sharma, R.K., Bist, V.: A note on Lie nilpotent group rings. Bull. Austral. Math. Soc. 45, 503–506 (1992)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Victor Bovdi
    • 1
    • 2
    Email author
  • Tibor Juhász
    • 1
  • Ernesto Spinelli
    • 3
  1. 1.Institute of MathematicsUniversity of DebrecenDebrecenHungary
  2. 2.Institute of Mathematics and InformaticsCollege of NyíregyházaNyíregyházaHungary
  3. 3.Dipartimento di Matematica “E. De Giorgi”Università degli Studi di Lecce Via Provinciale Lecce-ArnesanoLecceItaly

Personalised recommendations