Advertisement

Algebras and Representation Theory

, Volume 8, Issue 4, pp 499–523 | Cite as

Triangulated Categories and the Ziegler Spectrum

  • Grigory GarkushaEmail author
  • Mike Prest
Article

Abstract

The relationship between the Ziegler spectrum of (the category of modules over) a ring and the Ziegler spectrum of its derived category is investigated. Over von Neumann regular rings and hereditary rings the spectrum of the derived category is a disjoint union of copies of the spectrum of the ring but in general there are further indecomposable pure-injective objects of the derived category.

Keywords

triangulated category Ziegler spectrum model theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Au]
    Auslander, M.: Coherent functors, In: Proc. Conf. on Categorical Algebra (La Jolla, CA, 1965), Springer, New York, 1966, pp. 189–231. Google Scholar
  2. [Bel1]
    Beligiannis, A.: Relative homological algebra and purity in triangulated categories, J. Algebra 227(1) (2000), 268–361. CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Bel2]
    Beligiannis, A.: On the Freyd categories of an additive category, Homology, Homotopy Appl. 2(1) (2000), 147–185. zbMATHMathSciNetGoogle Scholar
  4. [BK]
    Benson, D. and Krause, H.: Pure injectives and the spectrum of the cohomology ring of a finite group, J. Reine Angew. Math. 542(1) (2002), 23–51. MathSciNetzbMATHGoogle Scholar
  5. [CKN]
    Christensen, J. D., Keller, B. and Neeman, A.: Failure of Brown representability in derived categories, Topology 40(6) (2001), 1339–1361. MathSciNetzbMATHGoogle Scholar
  6. [ES]
    Eklof, P. and Sabbagh, G.: Model-completions and modules, Ann. Math. Logic 2 (1971), 251–295. CrossRefMathSciNetzbMATHGoogle Scholar
  7. [G]
    Garkusha, G.: Grothendieck categories, Algebra i Analiz 13(2) (2001), 1–68. (Russian). English transl. in St. Petersburg Math. J. 13(2) (2002), 149–200. MathSciNetGoogle Scholar
  8. [GaPr]
    Garkusha, G. and Prest, M.: Injective objects in triangulated categories, J. Algebra Appl. 3(4) (2004), 367–389. MathSciNetzbMATHGoogle Scholar
  9. [He1]
    Herzog, I.: Elementary duality of modules, Trans. Amer. Math. Soc. 340(1) (1993), 37–69. zbMATHMathSciNetGoogle Scholar
  10. [He2]
    Herzog, I.: The Ziegler spectrum of a locally coherent Grothendieck category, Proc. London Math. Soc. 74(3) (1997), 503–558. CrossRefzbMATHMathSciNetGoogle Scholar
  11. [HPS]
    Hovey, M., Palmieri, J. H. and Strickland, N. P.: Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128(610) (1997). Google Scholar
  12. [JeLe]
    Jensen, C. U. and Lenzing, H.: Model theoretic algebra: with particular emphasis on fields, rings, modules, In: Algebra, Logic and Appl. 2, Gordon and Breach, New York, 1989. Google Scholar
  13. [Kr1]
    Krause, H.: The spectrum of a locally coherent category, J. Pure Appl. Algebra 114(3) (1997), 259–271. CrossRefzbMATHMathSciNetGoogle Scholar
  14. [Kr2]
    Krause, H.: Decomposing thick subcategories of the stable module category, Math. Ann. 313(1) (1999), 95–108. CrossRefzbMATHMathSciNetGoogle Scholar
  15. [Kr3]
    Krause, H.: Smashing subcategories and the telescope conjecture – an algebraic approach, Invent. Math. 139(1) (2000), 99–133. zbMATHMathSciNetCrossRefGoogle Scholar
  16. [Kr4]
    Krause, H.: Coherent functors in stable homotopy theory, Fundam. Math. 173(1) (2002), 33–56. zbMATHMathSciNetGoogle Scholar
  17. [KR]
    Krause, H. and Reichenbach, U.: Endofiniteness in stable homotopy theory, Trans. Amer. Math. Soc. 353(1) (2001), 157–173. CrossRefMathSciNetzbMATHGoogle Scholar
  18. [Ne1]
    Neeman, A.: The Brown representability theorem and phantomless triangulated categories, J. Algebra 151(1) (1992), 118–155. CrossRefzbMATHMathSciNetGoogle Scholar
  19. [Ne2]
    Neeman, A.: The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9(1) (1996), 205–236. CrossRefzbMATHMathSciNetGoogle Scholar
  20. [PrPu]
    Prest, M. and Puninski, G.: Some model theory over hereditary noetherian domains, J. Algebra 211(1) (1999), 268–297. CrossRefMathSciNetzbMATHGoogle Scholar
  21. [St]
    Stenström, B.: Rings of quotients, In: Grundle. Math. Wiss. 217, Springer-Verlag, Berlin, 1975. Google Scholar
  22. [Zie]
    Ziegler, M.: Model theory and modules, Ann. Pure Appl. Logic 26 (1984), 149–213. CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.The Euler International Mathematics InstituteSt. PetersburgRussia
  2. 2.Department of MathematicsUniversity of ManchesterManchesterEngland

Personalised recommendations