Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise

  • 12 Accesses

Abstract

We consider adaptive maximum-likelihood-type estimators and adaptive Bayes-type ones for discretely observed ergodic diffusion processes with observation noise whose variance is constant. The quasi-likelihood functions for the diffusion and drift parameters are introduced and the polynomial-type large deviation inequalities for those quasi-likelihoods are shown to see the asymptotic properties of the adaptive Bayes-type estimators and the convergence of moments for both adaptive maximum-likelihood-type estimators and adaptive Bayes-type ones.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bibby, B. M., Sørensen, M. (1995). Martingale estimating functions for discretely observed diffusion processes. Bernoulli, 1, 17–39.

  2. Clinet, S., Yoshida, N. (2017). Statistical inference for ergodic point processes and application to limit order book. Stochastic Processes and Their Applications, 127(6), 1800–1839.

  3. Eguchi, S., Masuda, H. (2018). Schwarz-type model comparison for LAQ models. Bernoulli, 24(3), 2278–2327.

  4. Favetto, B. (2014). Parameter estimation by contrast minimization for noisy observations of a diffusion process. Statistics, 48(6), 1344–1370.

  5. Favetto, B. (2016). Estimating functions for noisy observations of ergodic diffusions. Statistical Inference for Stochastic Processes, 19, 1–28.

  6. Florens-Zmirou, D. (1989). Approximate discrete time schemes for statistics of diffusion processes. Statistics, 20(4), 547–557.

  7. Ibragimov, I. A., Has’minskii, R. Z. (1972). The asymptotic behaviour of certain statistical estimates in the smooth case. I. Investigation of the likelihood ratio. Teorija Verojatnostei i ee Primenenija, 17, 469–486. (Russian).

  8. Ibragimov, I. A., Has’minskii, R. Z. (1973). Asymptotic behaviour of certain statistical estimates. II. Limit theorems for a posteriori density and for Bayesian estimates. Teorija Verojatnostei i ee Primenenija, 18, 78–93. (Russian).

  9. Ibragimov, I. A., Has’minskii, R. Z. (1981). Statistical estimation. New York: Springer.

  10. Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., Vetter, M. (2009). Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Processes and Their Applications, 119(7), 2249–2276.

  11. Kaino, Y., Uchida, M. (2018a). Hybrid estimators for small diffusion processes based on reduced data. Metrika, 81(7), 745–773.

  12. Kaino, Y., Uchida, M. (2018b). Hybrid estimators for stochastic differential equations from reduced data. Statistical Inference for Stochastic Processes, 21(2), 435–454.

  13. Kaino, Y., Nakakita, S. H., Uchida, M. (2018). Hybrid estimation for ergodic diffusion processes based on noisy discrete observations. arXiv:1812.07497.

  14. Kamatani, K. (2018). Efficient strategy for the Markov chain Monte Carlo in high-dimension with heavy-tailed target probability distribution. Bernoulli, 24(4B), 3711–3750.

  15. Kamatani, K., Uchida, M. (2015). Hybrid multi-step estimators for stochastic differential equations based on sampled data. Statistical Inference for Stochastic Processes, 18(2), 177–204.

  16. Kessler, M. (1995). Estimation des parametres d’une diffusion par des contrastes corriges. Comptes rendus de l’Académie des sciences. Série 1, Mathématique, 320(3), 359–362.

  17. Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of Statistics, 24, 211–229.

  18. Kutoyants, Y. A. (1984). Parameter estimation for stochastic processes (B. L. S. Prakasa Rao, Ed., Trans.). Berlin: Herdermann.

  19. Kutoyants, Y. A. (1994). Identification of dynamical systems with small noise. Dordrecht: Kluwer.

  20. Kutoyants, Y. A. (2004). Statistical inference for ergodic diffusion processes. London: Springer.

  21. Masuda, H., Shimizu, Y. (2017). Moment convergence in regularized estimation under multiple and mixed-rates asymptotics. Mathematical Methods of Statistics, 26(2), 81–110.

  22. Nakakita, S. H., Uchida, M. (2017). Adaptive estimation and noise detection for an ergodic diffusion with observation noises. arXiv:1711.04462.

  23. Nakakita, S. H., Uchida, M. (2019a). Inference for ergodic diffusions plus noise. Scandinavian Journal of Statistics, 46(2), 470–516.

  24. Nakakita, S. H., Uchida, M. (2019b). Adaptive test for ergodic diffusions plus noise. Journal of Statistical Planning and Inference, 203, 131–150.

  25. Negri, I., Nishiyama, Y. (2017). Moment convergence of \(Z\)-estimators. Statistical Inference for Stochastic Processes, 20(3), 387–397.

  26. NWTC Information Portal. (2018). NWTC 135-m meteorological towers data repository. Retrieved from https://nwtc.nrel.gov/135mdata. Accessed 15 Feb 2018.

  27. Ogihara, T. (2018). Parametric inference for nonsynchronously observed diffusion processes in the presence of market microstructure noise. Bernoulli, 24(4B), 3318–3383.

  28. Ogihara, T. (2019). On the asymptotic properties of Bayes-type estimators with general loss functions. Journal of Statistical Planning and Inference, 199, 136–150.

  29. Ogihara, T., Yoshida, N. (2011). Quasi-likelihood analysis for the stochastic differential equation with jumps. Statistical inference for stochastic processes, 14(3), 189–229.

  30. Pardoux, E., Veretennikov, A. Y. (2001). On the Poisson equation and diffusion approximation. I. The Annals of Probability, 29(3), 1061–1085.

  31. Uchida, M. (2010). Contrast-based information criterion for ergodic diffusion processes from discrete observations. Annals of the Institute of Statistical Mathematics, 62(1), 161–187.

  32. Uchida, M., Yoshida, N. (2012). Adaptive estimation of an ergodic diffusion process based on sampled data. Stochastic Processes and their Applications, 122(8), 2885–2924.

  33. Uchida, M., Yoshida, N. (2014). Adaptive Bayes-type estimators of ergodic diffusion processes from discrete observations. Statistical Inference for Stochastic Processes, 17(2), 181–219.

  34. Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. Journal of Multivariate Analysis, 41(2), 220–242.

  35. Yoshida, N. (2011). Polynomial-type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Annals of the Institute of Statistical Mathematics, 63, 431–479.

Download references

Acknowledgements

The authors would like to thank the referee for valuable comments and suggestions. This work was partially supported by JST CREST, JSPS KAKENHI Grant Number JP17H01100 and Cooperative Research Program of the Institute of Statistical Mathematics.

Author information

Correspondence to Shogo H. Nakakita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakakita, S.H., Kaino, Y. & Uchida, M. Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise. Ann Inst Stat Math (2020). https://doi.org/10.1007/s10463-020-00746-3

Download citation

Keywords

  • Bayes-type estimation
  • Convergence of moments
  • Diffusion processes
  • Observation noise
  • Quasi-likelihood analysis
  • Stochastic differential equations