Fixed point characterizations of continuous univariate probability distributions and their applications
- 30 Downloads
Abstract
By extrapolating the explicit formula of the zero-bias distribution occurring in the context of Stein’s method, we construct characterization identities for a large class of absolutely continuous univariate distributions. Instead of trying to derive characterizing distributional transformations that inherit certain structures for the use in further theoretic endeavors, we focus on explicit representations given through a formula for the density- or distribution function. The results we establish with this ambition feature immediate applications in the area of goodness-of-fit testing. We draw up a blueprint for the construction of tests of fit that include procedures for many distributions for which little (if any) practicable tests are known. To illustrate this last point, we construct a test for the Burr Type XII distribution for which, to our knowledge, not a single test is known aside from the classical universal procedures.
Keywords
Burr Type XII distribution Density approach Distributional characterizations Goodness-of-fit tests Non-normalized statistical models Probability distributions Stein’s methodNotes
Acknowledgements
The authors would like to thank an associate editor as well as three anonymous reviewers for their comments and suggestions that led to a major improvement of the paper.
Supplementary material
References
- Allison, J. S., Santana, L. (2015). On a data-dependent choice of the tuning parameter appearing in certain goodness-of-fit tests. Journal of Statistical Computation and Simulation, 85(16), 3276–3288.MathSciNetCrossRefGoogle Scholar
- Anastasiou, A. (2018). Assessing the multivariate normal approximation of the maximum likelihood estimator from high-dimensional, heterogeneous data. Electronic Journal of Statistics, 12(2), 3794–3828.MathSciNetzbMATHCrossRefGoogle Scholar
- Anastasiou, A., Gaunt, R. (2019). Multivariate normal approximation of the maximum likelihood estimator via the delta method. to appear in Brazilian Journal of Probability and Statistics arXiv:1609.03970.
- Anastasiou, A., Reinert, G. (2017). Bounds for the normal approximation of the maximum likelihood estimator. Bernoulli, 23(1), 191–218.MathSciNetzbMATHCrossRefGoogle Scholar
- Anastasiou, A., Reinert, G. (2018). Bounds for the asymptotic distribution of the likelihood ratio. arXiv e-prints arXiv:1806.03666.
- Barbour, A. D. (1982). Poisson convergence and random graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 92(2), 349–359.MathSciNetzbMATHCrossRefGoogle Scholar
- Barbour, A. D. (1990). Stein’s method for diffusion approximations. Probability Theory and Related Fields, 84(3), 297–322.MathSciNetzbMATHCrossRefGoogle Scholar
- Barbour, A. D., Karoński, M., Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. Journal of Combinatorial Theory, Series B, 47(2), 125–145.MathSciNetzbMATHCrossRefGoogle Scholar
- Baringhaus, L., Henze, N. (1988). A consistent test for multivariate normality based on the empirical characteristic function. Metrika, 35(1), 339–348.MathSciNetzbMATHCrossRefGoogle Scholar
- Baringhaus, L., Henze, N. (2000). Tests of fit for exponentiality based on a characterization via the mean residual life function. Statistical Papers, 41(2), 225–236.MathSciNetzbMATHCrossRefGoogle Scholar
- Betsch, S., Ebner, B. (2019a). A new characterization of the Gamma distribution and associated goodness-of-fit tests. Metrika, 82(7), 779–806.MathSciNetCrossRefGoogle Scholar
- Betsch, S., Ebner, B. (2019b). Testing normality via a distributional fixed point property in the Stein characterization. TEST, https://doi.org/10.1007/s11749-019-00630-0.
- Braverman, A., Dai, J. G. (2017). Stein’s method for steady-state diffusion approximations of \({M} / \mathit{Ph} / n + {M}\) systems. The Annals of Applied Probability, 27(1), 550–581.MathSciNetzbMATHCrossRefGoogle Scholar
- Braverman, A., Dai, J. G., Feng, J. (2016). Stein’s method for steady-state diffusion approximations: An introduction through the Erlang-A and Erlang-C models. Stochastic Systems, 6(2), 301–366.MathSciNetzbMATHCrossRefGoogle Scholar
- Cabaña, A., Quiroz, A. (2005). Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions. TEST, 14(2), 417–432.MathSciNetzbMATHCrossRefGoogle Scholar
- Carrillo, C., Cidrás, J., Díaz-Dorado, E., Obando-Montaño, A. F. (2014). An approach to determine the Weibull parameters for wind energy analysis: The case of Galicia (Spain). Energies, 7(4), 2676–2700.CrossRefGoogle Scholar
- Chatterjee, S., Shao, Q.-M. (2011). Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. The Annals of Applied Probability, 21(2), 464–483.MathSciNetzbMATHCrossRefGoogle Scholar
- Chen, L. H. Y., Goldstein, L., Shao, Q.-M. (2011). Normal approximation by Stein’s method. Berlin: Springer.zbMATHCrossRefGoogle Scholar
- Chwialkowski, K., Strathmann, H., Gretton, A. (2016). A kernel test of goodness of fit. Proceedings of the 33rd international conference on machine learning, ICML’16 (Vol. 48, pp. 2606–2615).Google Scholar
- Döbler, C. (2015). Stein’s method of exchangeable pairs for the Beta distribution and generalizations. Electronic Journal of Probability, 20(109), 1–34.MathSciNetzbMATHGoogle Scholar
- Döbler, C. (2017). Distributional transformations without orthogonality relations. Journal of Theoretical Probability, 30(1), 85–116.MathSciNetzbMATHCrossRefGoogle Scholar
- Epps, T. W., Pulley, L. B. (1983). A test for normality based on the empirical characteristic function. Biometrika, 70(3), 723–726.MathSciNetzbMATHCrossRefGoogle Scholar
- Fang, X. (2014). Discretized normal approximation by Stein’s method. Bernoulli, 20(3), 1404–1431.MathSciNetzbMATHCrossRefGoogle Scholar
- Gaunt, R., Pickett, A., Reinert, G. (2017). Chi-square approximation by Stein’s method with application to Pearson’s statistic. Annals of Applied Probability, 27(2), 720–756.MathSciNetzbMATHCrossRefGoogle Scholar
- Goldstein, L., Reinert, G. (1997). Stein’s method and the zero bias transformation with application to simple random sampling. The Annals of Applied Probability, 7(4), 935–952.MathSciNetzbMATHCrossRefGoogle Scholar
- Goldstein, L., Reinert, G. (2005). Distributional transformations, orthogonal polynomials, and Stein characterizations. Journal of Theoretical Probability, 18(1), 237–260.MathSciNetzbMATHCrossRefGoogle Scholar
- Götze, F. (1991). On the rate of convergence in the multivariate CLT. The Annals of Probability, 19(2), 724–739.MathSciNetzbMATHCrossRefGoogle Scholar
- Henze, N., Jiménez-Gamero, M. D. (2019). A new class of tests for multinormality with iid and garch data based on the empirical moment generating function. TEST, 28(2), 499–521.MathSciNetzbMATHCrossRefGoogle Scholar
- Henze, N., Klar, B. (2002). Goodness-of-fit tests for the inverse Gaussian distribution based on the empirical Laplace transform. Annals of the Institute of Statistical Mathematics, 54(2), 425–444.MathSciNetzbMATHCrossRefGoogle Scholar
- Henze, N., Meintanis, S. G., Ebner, B. (2012). Goodness-of-fit tests for the Gamma distribution based on the empirical Laplace transform. Communications in Statistics-Theory and Methods, 41(9), 1543–1556.MathSciNetzbMATHCrossRefGoogle Scholar
- Hudson, H. M. (1978). A natural identity for exponential families with applications in multiparameter estimation. The Annals of Statistics, 6(3), 473–484.MathSciNetzbMATHCrossRefGoogle Scholar
- Jalali, A., Watkins, A. J. (2009). On maximum likelihood estimation for the two parameter Burr XII distribution. Communications in Statistics—Theory and Methods, 38(11), 1916–1926.MathSciNetzbMATHCrossRefGoogle Scholar
- Jiménez-Gamero, M. D., Alba-Fernández, V., Muñoz-García, J., Chalco-Cano, Y. (2009). Goodness-of-fit tests based on empirical characteristic functions. Computational Statistics & Data Analysis, 53(12), 3957–3971.MathSciNetzbMATHCrossRefGoogle Scholar
- Kim, S.-T. (2000). A use of the Stein-Chen method in time series analysis. Journal of Applied Probability, 37(4), 1129–1136.MathSciNetzbMATHCrossRefGoogle Scholar
- Kleiber, C., Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. Wiley series in probability and statistics. Hoboken: Wiley.Google Scholar
- Ley, C. and Swan, Y. (2011). A unified approach to Stein characterizations. arXiv e-prints arXiv:1105.4925v3.
- Ley, C., Swan, Y. (2013a). Local Pinsker inequalities via Stein’s discrete density approach. IEEE Transactions on Information Theory, 59(9), 5584–5591.MathSciNetzbMATHCrossRefGoogle Scholar
- Ley, C., Swan, Y. (2013b). Stein’s density approach and information inequalities. Electronic Communications in Probability, 18, 1–14.MathSciNetzbMATHCrossRefGoogle Scholar
- Ley, C., Swan, Y. (2016). Parametric Stein operators and variance bounds. Brazilian Journal of Probability and Statistics, 30(2), 171–195.MathSciNetzbMATHCrossRefGoogle Scholar
- Ley, C., Reinert, G., Swan, Y. (2017). Stein’s method for comparison of univariate distributions. Probability Surveys, 14, 1–52.MathSciNetzbMATHCrossRefGoogle Scholar
- Linnik, Y. V. (1962). Linear forms and statistical criteria I, II. Selected Translations in Mathematical Statistics and Probability, 3,1–40: 41–90. Originally published 1953 in the Ukrainian Mathematical Journal, Vol. 5, pp. 207–243, 247–290 (in Russian).Google Scholar
- Liu, Q., Lee, J. D., Jordan, M. (2016). A kernelized Stein discrepancy for goodness-of-fit tests. Proceedings of the 33rd International Conference on Machine Learning, ICML’16, (Vol. 46, pp. 276–284).Google Scholar
- Nikitin, Y. Y. (2017). Tests based on characterizations, and their efficiencies: A survey. Acta et Commentationes Universitatis Tartuensis de Mathematica, 21(1), 3–24.MathSciNetzbMATHCrossRefGoogle Scholar
- O’Reilly, F. J., Stephens, M. A. (1982). Characterizations and goodness of fit tests. Journal of the Royal Statistical Society: Series B (Methodological), 44(3), 353–360.MathSciNetzbMATHGoogle Scholar
- Peköz, E. A., Röllin, A. (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. The Annals of Probability, 39(2), 587–608.MathSciNetzbMATHCrossRefGoogle Scholar
- Pinelis, I. (2017). Optimal-order uniform and nonuniform bounds on the rate of convergence to normality for maximum likelihood estimators. Electronic Journal of Statistics, 11(1), 1160–1179.MathSciNetzbMATHCrossRefGoogle Scholar
- Prakasa Rao, B. L. S. (1979). Characterizations of distributions through some identities. Journal of Applied Probability, 16(4), 903–909.MathSciNetzbMATHCrossRefGoogle Scholar
- Proakis, J. G., Salehi, M. (2008). Digital communications, 5th ed. New York: McGraw-Hill.Google Scholar
- R Core Team (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
- Reinert, G., Röllin, A. (2010). Random subgraph counts and U-statistics: Multivariate normal approximation via exchangeable pairs and embedding. Journal of Applied Probability, 47(2), 378–393.MathSciNetzbMATHCrossRefGoogle Scholar
- Rogers, G. L. (2008). Multiple path analysis of reflectance from turbid media. Journal of the Optical Society of America A, 25(11), 2879–2883.CrossRefGoogle Scholar
- Ross, N. (2011). Fundamentals of Stein’s method. Probability Surveys, 8, 210–293.MathSciNetzbMATHCrossRefGoogle Scholar
- Shah, A., Gokhale, D. V. (1993). On maximum product of spacings (mps) estimation for Burr XII distributions. Communications in Statistics—Simulation and Computation, 22(3), 615–641.zbMATHCrossRefGoogle Scholar
- Singh, S. K., Maddala, G. S. (1976). A function for size distribution of incomes. Econometrica, 44(5), 963–970.CrossRefGoogle Scholar
- Singh, V. P. (1987). On application of the Weibull distribution in hydrology. Water Resources Management, 1(1), 33–43.CrossRefGoogle Scholar
- Stein, C. (1986). Approximate computation of expectations, Vol. 7. Hayward: Institute of Mathematical Statistics.zbMATHGoogle Scholar
- Stein, C., Diaconis, P., Holmes, S., Reinert, G. (2004). Use of exchangeable pairs in the analysis of simulations. In P. Diaconis & S. Holmes (Eds.), Stein’s method. Lecture notes-monograph series, Vol. 46, pp. 1–25. Beachwood, OH: Institute of Mathematical Statistics.Google Scholar
- Tenreiro, C. (2019). On the automatic selection of the tuning parameter appearing in certain families of goodness-of-fit tests. Journal of Statistical Computation and Simulation, 89(10), 1780–1797.MathSciNetCrossRefGoogle Scholar
- Wingo, D. R. (1983). Maximum likelihood methods for fitting the Burr type XII distribution to life test data. Biometrical Journal, 25(1), 77–84.MathSciNetzbMATHCrossRefGoogle Scholar
- Ying, L. (2017). Stein’s method for mean-field approximations in light and heavy traffic regimes. SIGMETRICS 2017 abstracts—Proceedings of the 2017 ACM SIGMETRICS/International conference on measurement and modeling of computer systems. Association for Computing Machinery, Inc.Google Scholar
- Zghoul, A. A. (2010). A goodness of fit test for normality based on the empirical moment generating function. Communications in Statistics—Simulation and Computation, 39(6), 1292–1304.MathSciNetzbMATHCrossRefGoogle Scholar