Fixed point characterizations of continuous univariate probability distributions and their applications

  • Steffen BetschEmail author
  • Bruno Ebner


By extrapolating the explicit formula of the zero-bias distribution occurring in the context of Stein’s method, we construct characterization identities for a large class of absolutely continuous univariate distributions. Instead of trying to derive characterizing distributional transformations that inherit certain structures for the use in further theoretic endeavors, we focus on explicit representations given through a formula for the density- or distribution function. The results we establish with this ambition feature immediate applications in the area of goodness-of-fit testing. We draw up a blueprint for the construction of tests of fit that include procedures for many distributions for which little (if any) practicable tests are known. To illustrate this last point, we construct a test for the Burr Type XII distribution for which, to our knowledge, not a single test is known aside from the classical universal procedures.


Burr Type XII distribution Density approach Distributional characterizations Goodness-of-fit tests Non-normalized statistical models Probability distributions Stein’s method 



The authors would like to thank an associate editor as well as three anonymous reviewers for their comments and suggestions that led to a major improvement of the paper.

Supplementary material

10463_2019_735_MOESM1_ESM.pdf (223 kb)
Supplementary material 1 (pdf 222 KB)


  1. Allison, J. S., Santana, L. (2015). On a data-dependent choice of the tuning parameter appearing in certain goodness-of-fit tests. Journal of Statistical Computation and Simulation, 85(16), 3276–3288.MathSciNetCrossRefGoogle Scholar
  2. Anastasiou, A. (2018). Assessing the multivariate normal approximation of the maximum likelihood estimator from high-dimensional, heterogeneous data. Electronic Journal of Statistics, 12(2), 3794–3828.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Anastasiou, A., Gaunt, R. (2019). Multivariate normal approximation of the maximum likelihood estimator via the delta method. to appear in Brazilian Journal of Probability and Statistics arXiv:1609.03970.
  4. Anastasiou, A., Reinert, G. (2017). Bounds for the normal approximation of the maximum likelihood estimator. Bernoulli, 23(1), 191–218.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Anastasiou, A., Reinert, G. (2018). Bounds for the asymptotic distribution of the likelihood ratio. arXiv e-prints arXiv:1806.03666.
  6. Barbour, A. D. (1982). Poisson convergence and random graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 92(2), 349–359.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Barbour, A. D. (1990). Stein’s method for diffusion approximations. Probability Theory and Related Fields, 84(3), 297–322.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Barbour, A. D., Karoński, M., Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. Journal of Combinatorial Theory, Series B, 47(2), 125–145.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Baringhaus, L., Henze, N. (1988). A consistent test for multivariate normality based on the empirical characteristic function. Metrika, 35(1), 339–348.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Baringhaus, L., Henze, N. (2000). Tests of fit for exponentiality based on a characterization via the mean residual life function. Statistical Papers, 41(2), 225–236.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Betsch, S., Ebner, B. (2019a). A new characterization of the Gamma distribution and associated goodness-of-fit tests. Metrika, 82(7), 779–806.MathSciNetCrossRefGoogle Scholar
  12. Betsch, S., Ebner, B. (2019b). Testing normality via a distributional fixed point property in the Stein characterization. TEST,
  13. Braverman, A., Dai, J. G. (2017). Stein’s method for steady-state diffusion approximations of \({M} / \mathit{Ph} / n + {M}\) systems. The Annals of Applied Probability, 27(1), 550–581.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Braverman, A., Dai, J. G., Feng, J. (2016). Stein’s method for steady-state diffusion approximations: An introduction through the Erlang-A and Erlang-C models. Stochastic Systems, 6(2), 301–366.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Cabaña, A., Quiroz, A. (2005). Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions. TEST, 14(2), 417–432.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Carrillo, C., Cidrás, J., Díaz-Dorado, E., Obando-Montaño, A. F. (2014). An approach to determine the Weibull parameters for wind energy analysis: The case of Galicia (Spain). Energies, 7(4), 2676–2700.CrossRefGoogle Scholar
  17. Chatterjee, S., Shao, Q.-M. (2011). Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. The Annals of Applied Probability, 21(2), 464–483.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Chen, L. H. Y., Goldstein, L., Shao, Q.-M. (2011). Normal approximation by Stein’s method. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  19. Chwialkowski, K., Strathmann, H., Gretton, A. (2016). A kernel test of goodness of fit. Proceedings of the 33rd international conference on machine learning, ICML’16 (Vol. 48, pp. 2606–2615).Google Scholar
  20. Döbler, C. (2015). Stein’s method of exchangeable pairs for the Beta distribution and generalizations. Electronic Journal of Probability, 20(109), 1–34.MathSciNetzbMATHGoogle Scholar
  21. Döbler, C. (2017). Distributional transformations without orthogonality relations. Journal of Theoretical Probability, 30(1), 85–116.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Epps, T. W., Pulley, L. B. (1983). A test for normality based on the empirical characteristic function. Biometrika, 70(3), 723–726.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Fang, X. (2014). Discretized normal approximation by Stein’s method. Bernoulli, 20(3), 1404–1431.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Gaunt, R., Pickett, A., Reinert, G. (2017). Chi-square approximation by Stein’s method with application to Pearson’s statistic. Annals of Applied Probability, 27(2), 720–756.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Goldstein, L., Reinert, G. (1997). Stein’s method and the zero bias transformation with application to simple random sampling. The Annals of Applied Probability, 7(4), 935–952.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Goldstein, L., Reinert, G. (2005). Distributional transformations, orthogonal polynomials, and Stein characterizations. Journal of Theoretical Probability, 18(1), 237–260.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Götze, F. (1991). On the rate of convergence in the multivariate CLT. The Annals of Probability, 19(2), 724–739.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Henze, N., Jiménez-Gamero, M. D. (2019). A new class of tests for multinormality with iid and garch data based on the empirical moment generating function. TEST, 28(2), 499–521.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Henze, N., Klar, B. (2002). Goodness-of-fit tests for the inverse Gaussian distribution based on the empirical Laplace transform. Annals of the Institute of Statistical Mathematics, 54(2), 425–444.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Henze, N., Meintanis, S. G., Ebner, B. (2012). Goodness-of-fit tests for the Gamma distribution based on the empirical Laplace transform. Communications in Statistics-Theory and Methods, 41(9), 1543–1556.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Hudson, H. M. (1978). A natural identity for exponential families with applications in multiparameter estimation. The Annals of Statistics, 6(3), 473–484.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Jalali, A., Watkins, A. J. (2009). On maximum likelihood estimation for the two parameter Burr XII distribution. Communications in Statistics—Theory and Methods, 38(11), 1916–1926.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Jiménez-Gamero, M. D., Alba-Fernández, V., Muñoz-García, J., Chalco-Cano, Y. (2009). Goodness-of-fit tests based on empirical characteristic functions. Computational Statistics & Data Analysis, 53(12), 3957–3971.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Kim, S.-T. (2000). A use of the Stein-Chen method in time series analysis. Journal of Applied Probability, 37(4), 1129–1136.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Kleiber, C., Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. Wiley series in probability and statistics. Hoboken: Wiley.Google Scholar
  36. Ley, C. and Swan, Y. (2011). A unified approach to Stein characterizations. arXiv e-prints arXiv:1105.4925v3.
  37. Ley, C., Swan, Y. (2013a). Local Pinsker inequalities via Stein’s discrete density approach. IEEE Transactions on Information Theory, 59(9), 5584–5591.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Ley, C., Swan, Y. (2013b). Stein’s density approach and information inequalities. Electronic Communications in Probability, 18, 1–14.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Ley, C., Swan, Y. (2016). Parametric Stein operators and variance bounds. Brazilian Journal of Probability and Statistics, 30(2), 171–195.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Ley, C., Reinert, G., Swan, Y. (2017). Stein’s method for comparison of univariate distributions. Probability Surveys, 14, 1–52.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Linnik, Y. V. (1962). Linear forms and statistical criteria I, II. Selected Translations in Mathematical Statistics and Probability, 3,1–40: 41–90. Originally published 1953 in the Ukrainian Mathematical Journal, Vol. 5, pp. 207–243, 247–290 (in Russian).Google Scholar
  42. Liu, Q., Lee, J. D., Jordan, M. (2016). A kernelized Stein discrepancy for goodness-of-fit tests. Proceedings of the 33rd International Conference on Machine Learning, ICML’16, (Vol. 46, pp. 276–284).Google Scholar
  43. Nikitin, Y. Y. (2017). Tests based on characterizations, and their efficiencies: A survey. Acta et Commentationes Universitatis Tartuensis de Mathematica, 21(1), 3–24.MathSciNetzbMATHCrossRefGoogle Scholar
  44. O’Reilly, F. J., Stephens, M. A. (1982). Characterizations and goodness of fit tests. Journal of the Royal Statistical Society: Series B (Methodological), 44(3), 353–360.MathSciNetzbMATHGoogle Scholar
  45. Peköz, E. A., Röllin, A. (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. The Annals of Probability, 39(2), 587–608.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Pinelis, I. (2017). Optimal-order uniform and nonuniform bounds on the rate of convergence to normality for maximum likelihood estimators. Electronic Journal of Statistics, 11(1), 1160–1179.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Prakasa Rao, B. L. S. (1979). Characterizations of distributions through some identities. Journal of Applied Probability, 16(4), 903–909.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Proakis, J. G., Salehi, M. (2008). Digital communications, 5th ed. New York: McGraw-Hill.Google Scholar
  49. R Core Team (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  50. Reinert, G., Röllin, A. (2010). Random subgraph counts and U-statistics: Multivariate normal approximation via exchangeable pairs and embedding. Journal of Applied Probability, 47(2), 378–393.MathSciNetzbMATHCrossRefGoogle Scholar
  51. Rogers, G. L. (2008). Multiple path analysis of reflectance from turbid media. Journal of the Optical Society of America A, 25(11), 2879–2883.CrossRefGoogle Scholar
  52. Ross, N. (2011). Fundamentals of Stein’s method. Probability Surveys, 8, 210–293.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Shah, A., Gokhale, D. V. (1993). On maximum product of spacings (mps) estimation for Burr XII distributions. Communications in Statistics—Simulation and Computation, 22(3), 615–641.zbMATHCrossRefGoogle Scholar
  54. Singh, S. K., Maddala, G. S. (1976). A function for size distribution of incomes. Econometrica, 44(5), 963–970.CrossRefGoogle Scholar
  55. Singh, V. P. (1987). On application of the Weibull distribution in hydrology. Water Resources Management, 1(1), 33–43.CrossRefGoogle Scholar
  56. Stein, C. (1986). Approximate computation of expectations, Vol. 7. Hayward: Institute of Mathematical Statistics.zbMATHGoogle Scholar
  57. Stein, C., Diaconis, P., Holmes, S., Reinert, G. (2004). Use of exchangeable pairs in the analysis of simulations. In P. Diaconis & S. Holmes (Eds.), Stein’s method. Lecture notes-monograph series, Vol. 46, pp. 1–25. Beachwood, OH: Institute of Mathematical Statistics.Google Scholar
  58. Tenreiro, C. (2019). On the automatic selection of the tuning parameter appearing in certain families of goodness-of-fit tests. Journal of Statistical Computation and Simulation, 89(10), 1780–1797.MathSciNetCrossRefGoogle Scholar
  59. Wingo, D. R. (1983). Maximum likelihood methods for fitting the Burr type XII distribution to life test data. Biometrical Journal, 25(1), 77–84.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Ying, L. (2017). Stein’s method for mean-field approximations in light and heavy traffic regimes. SIGMETRICS 2017 abstracts—Proceedings of the 2017 ACM SIGMETRICS/International conference on measurement and modeling of computer systems. Association for Computing Machinery, Inc.Google Scholar
  61. Zghoul, A. A. (2010). A goodness of fit test for normality based on the empirical moment generating function. Communications in Statistics—Simulation and Computation, 39(6), 1292–1304.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2019

Authors and Affiliations

  1. 1.Institute of StochasticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations