Poisson source localization on the plane: cusp case

  • O. V. Chernoyarov
  • S. Dachian
  • Yu. A. KutoyantsEmail author


This work is devoted to the problem of estimation of the localization of Poisson source. The observations are inhomogeneous Poisson processes registered by more than three detectors on the plane. We study the behavior of the Bayes estimators in the asymptotic of large intensities. It is supposed that the intensity functions of the signals arriving in the detectors have cusp-type singularity. We show the consistency, limit distributions, the convergence of moments and asymptotic efficiency of these estimators.


Inhomogeneous Poisson process Poisson source Sensors Bayes estimators Cusp-type singularity 



This work was done under partial financial support of the Grant of RSF Number 14-49-00079 and supported by the Tomsk State University Academic D.I. Mendeleev Fund Program under Grant Number Serguei Dachian acknowledges support from the Labex CEMPI (ANR-11-LABX-0007-01).


  1. Chernoyarov, O. V., Kutoyants, Yu. A. (2019). Poisson source localization on the plane: Smooth case. Metrika. arXiv:1806.06382 (to appear).
  2. Chernoyarov, O. V., Dachian, S., Kutoyants, Yu. A. (2018). On parameter estimation for cusp-type signals. Annals of the Institute of Statistical Mathematics, 70(1), 39–62.Google Scholar
  3. Dachian, S. (2003). Estimation of cusp location by Poisson observations. Statistical Inference for Stochastic Processes, 6(1), 1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Dachian, S. (2011). Estimation of the location of a \(0\)-type or \(\infty \)-type singularity by Poisson observations. A Journal of Theoretical and Applied Statistics, 45(5), 509–523.MathSciNetzbMATHGoogle Scholar
  5. Dachian, S., Kutoyants, Yu. A. (2003). On cusp estimation for ergodic diffusions processes. Journal of Statistical Planning and Inference, 117, 153–166.Google Scholar
  6. Dachian, S., Kordzakhia, N., Kutoyants, Yu. A., Novikov, A. (2018). Estimation of cusp location of stochastic processes: A survey. Statistical Inference for Stochastic Processes, 21(2), 345–362.Google Scholar
  7. Farinetto, C., Kutoyants, Yu. A., Top, A. (2018). Source localization on the plane: Change point case. Annales of the Institute of Statistical Mathematics. arXiv:1806.06381 (to appear).
  8. Ibragimov, I. A., Khasminskii, R. Z. (1981). Statistical estimation. Asymptotic theory. New York: Springer.CrossRefGoogle Scholar
  9. Karr, A. F. (1991). Point processes and their statistical inference. New York: Marcel Dekker.zbMATHGoogle Scholar
  10. Knoll, G. F. (2010). Radiation detection and measurement. New York: Wiley.Google Scholar
  11. Kordzakhia, N., Kutoyants, Yu. A., Novikov, A., Hin, L.-Y. (2018). On limit distributions of estimators in irregular statistical models and a new representation of fractional Brownian motion. Statistics & Probability Letters, 139, 141–151.Google Scholar
  12. Kutoyants, Yu. A. (1979). Parameter estimation of intensity of inhomogeneous Poisson processes. Problems of Control and Information Theory, 8, 137–149.Google Scholar
  13. Kutoyants, Yu. A. (1984). Parameter estimation for stochastic processes. Berlin: Heldermann.Google Scholar
  14. Kutoyants, Yu. A. (1998). Statistical inference for spatial poisson processes. New York: Springer.Google Scholar
  15. Kutoyants, Yu. A. (2017). The asymptotics of misspecified MLEs for some stochastic processes: A survey. Statistical inference for stochastic processes, 20(3), 347–368.Google Scholar
  16. Kutoyants, Yu. A. (2019). On cusp location estimation for perturbed dynamical system. Scandinavian Journal of Statistics (to appear).Google Scholar
  17. Liptser, R. S., Shiryayev, A. N. (2001). Statistics of random processes, I, II, 2nd ed. New York: Springer.Google Scholar
  18. Luo, X. (2013). GPS stochastic modeling. New York: Springer.CrossRefGoogle Scholar
  19. Snyder, D. R., Miller, M. I. (1991). Random point processes in time and space. New York: Springer.CrossRefzbMATHGoogle Scholar
  20. Streit, R. L. (2010). Poisson point processes: Imaging, tracking, and sensing. Boston: Springer.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2019

Authors and Affiliations

  • O. V. Chernoyarov
    • 1
    • 2
    • 3
  • S. Dachian
    • 3
    • 4
  • Yu. A. Kutoyants
    • 3
    • 5
    Email author
  1. 1.Department of Electronics and NanoelectronicsNational Research University “MPEI”MoscowRussia
  2. 2.Department of Higher Mathematics and System AnalysisMaikop State Technological UniversityMaikopRussia
  3. 3.International Laboratory of Statistics of Stochastic Processes and Quantitative FinanceNational Research Tomsk State UniversityTomskRussia
  4. 4.CNRS, UMR 8524 – Laboratoire Paul PainlevéUniversity of LilleLilleFrance
  5. 5.Laboratoire Manceau des MathematiquesLe Mans UniversityLe MansFrance

Personalised recommendations