Advertisement

Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models

  • Chenlong Li
  • Zhanjie SongEmail author
  • Wenjun Wang
Article
  • 26 Downloads

Abstract

Histogram maximum likelihood estimators of semi-parametric space–time self-exciting point process models via expectation–maximization algorithm can be biased when the background process is inhomogeneous. We explore an alternative estimation method based on the variable bandwidth kernel density estimation (KDE) and EM algorithm. The proposed estimation method involves expanding the semi-parametric models by incorporating an inhomogeneous background process in space and time and applying the variable bandwidth KDE to estimate the background intensity function. Using an example, we show how the variable bandwidth KDE can be estimated this way. Two simulation examples based on residual analysis are designed to evaluate and validate the ability of our methods to recover the background intensity function and parametric triggering intensity function.

Keywords

Space–time point process models Kernel density estimation Expectation–maximization algorithm Maximum likelihood 

Notes

Acknowledgements

The authors would like to express their sincere gratitude to the reviewers and editor for very helpful suggestions and comments which greatly improved this paper. The authors would like to thank the National Natural Science Foundation of China (No. 91746107, 91746205); the State Scholarship Fund of China Scholarship Council (CSC); and the National Science and Engineering Research Council (NSERC) of Canada, for their funding and support.

References

  1. Adelfio, G., Chiodi, M. (2015). Alternated estimation in semi-parametric space-time branching-type point processes with application to seismic catalogs. Stochastic Environmental Research and Risk assessment, 29(2), 443–450.CrossRefGoogle Scholar
  2. Bacry, E., Dayri, K., Muzy, J. F. (2012). Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data. The European Physical Journal B, 85(5), 1–12.CrossRefGoogle Scholar
  3. Bacry, E., Gaïffas, S., Muzy, J. F. (2015). A generalization error bound for sparse and low-rank multivariate Hawkes processes. arXiv:1501.00725.
  4. Bray, A., Schoenberg, F. P. (2013). Assessment of point process models for earthquake forecasting. Statistical Science, 28(4), 510–520.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bray, A., Wong, K., Barr, C. D., Schoenberg, F. P. (2014). Voronoi residual analysis of spatial point process models with applications to California earthquake forecasts. The Annals of Applied Statistics, 8(4), 2247–2267.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Brix, A., Diggle, P. J. (2011). Spatiotemporal prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(4), 823–841.Google Scholar
  7. Clements, R. A., Schoenberg, F. P., Veen, A. (2012). Evaluation of space-time point process models using super-thinning. Environmetrics, 23(7), 606–616.MathSciNetCrossRefGoogle Scholar
  8. Daley, D. J., Vere-Jones, D. (2003). An introduction to the theory of point processes: Volume I: Elementary theory and methods. New York: Springer.Google Scholar
  9. Diggle, P. J. (2006). Spatio-temporal point processes: Methods and applications. In Semstat2004 (pp. 1–45). London: CRC Press.Google Scholar
  10. Diggle, P., Moraga, B., Rowlingson, B. M., Taylor, et al. (2013). Spatial and spatio-temporal log-Gaussian Cox processes: Extending the geostatistical paradigm. Statistical Science, 28(4), 542–563.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fox, E. W., Schoenberg, F. P., Gordon, J. S. (2016a). Spatially inhomogeneous background rate estimators and uncertainty quantification for nonparametric Hawkes point process models of earthquake occurrences. The Annals of Applied Statistics, 10(3), 1725–1756.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Fox, E. W., Short, M. B., Schoenberg, F. P., Coronges, K. D., Bertozzi, A. L. (2016b). Modeling e-mail networks and inferring leadership using self-exciting point processes. Journal of the American Statistical Association, 111(514), 564–584.MathSciNetCrossRefGoogle Scholar
  13. Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1), 83–90.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Kagan, Y. Y. (2003). Accuracy of modern global earthquake catalogs. Physics of the Earth and Planetary Interiors, 135(2–3), 173–209.CrossRefGoogle Scholar
  15. Liniger, T. J. (2009). Multivariate Hawkes processes. Ph.D. Thesis, ETH Zurich.Google Scholar
  16. Marsan, D., Lengline, O. (2008). Extending earthquakes’ reach through cascading. Science, 319(5866), 1076–1079.CrossRefGoogle Scholar
  17. Mohler, G. O. (2013). Modeling and estimation of multi-source clustering in crime and security data. The Annals of Applied Statistics, 7(3), 1525–1539.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., Tita, G. E. (2011). Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106(493), 100–108.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Moller, J., Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point processes. London: CRC Press.CrossRefzbMATHGoogle Scholar
  20. Ogata, Y. (1981). On Lewis’ simulation method for point processes. IEEE Transactions on Information Theory, 27(1), 23–31.CrossRefzbMATHGoogle Scholar
  21. Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9–27.CrossRefGoogle Scholar
  22. Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2), 379–402.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Ogata, Y., Katsura, K., Tanemura, M. (2003). Modelling heterogeneous space-time occurrences of earthquakes and its residual analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 52(4), 499–509.Google Scholar
  24. Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39(2), 172–212.MathSciNetCrossRefGoogle Scholar
  25. Schoenberg, F. P. (2003). Multidimensional residual analysis of point process models for earthquake occurrences. Journal of the American Statistical Association, 98(464), 789–795.MathSciNetCrossRefGoogle Scholar
  26. Veen, A., Schoenberg, F. P. (2008). Estimation of space-time branching process models in seismology using an EM-type algorithm. Journal of the American Statistical Association, 103(482), 614–624.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Vere-Jones, D. (1992). Statistical methods for the description and display of earthquake catalogues. In A. T. Walden, P. Guttorp (Eds.), Statistics in the environmental and earth sciences, pp. 220–246. London: Edward Arnold.Google Scholar
  28. Vere-Jones, D. (1995). Forecasting earthquakes and earthquake risk. International Journal of Forecasting, 11(4), 503–538.CrossRefGoogle Scholar
  29. Yang, Y. X., Etesami, J., He, N., Kiyavash, N. (2018). Nonparametric Hawkes processes: Online estimation and generalization bounds. arXiv:1801.08273.
  30. Zhuang, J. C. (2011). Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth, Planets and Space, 63(3), 207–216.CrossRefGoogle Scholar
  31. Zhuang, J. C., Ogata, Y., Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97(458), 369–380.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Zhuang, J. C., Ogata, Y., Vere-Jones, D. (2004). Analyzing earthquake clustering features by using stochastic reconstruction. Journal of Geophysical Research: Solid Earth, 109(B5), B05301.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2019

Authors and Affiliations

  1. 1.School of MathematicsTianjin UniversityTianjinChina
  2. 2.Department of MathematicsWilfrid Laurier UniversityWaterlooCanada
  3. 3.Visual Pattern Analysis Research LabTianjin UniversityTianjinChina
  4. 4.School of Computer Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations