Advertisement

Spatially homogeneous copulas

  • Fabrizio Durante
  • Juan Fernández Sánchez
  • Wolfgang Trutschnig
Article

Abstract

We consider spatially homogeneous copulas, i.e. copulas whose corresponding measure is invariant under a special transformations of \([0,1]^2\), and we study their main properties with a view to possible use in stochastic models. Specifically, we express any spatially homogeneous copula in terms of a probability measure on [0, 1) via the Markov kernel representation. Moreover, we prove some symmetry properties and demonstrate how spatially homogeneous copulas can be used in order to construct copulas with surprisingly singular properties. Finally, a generalization of spatially homogeneous copulas to the so-called (mn)-spatially homogeneous copulas is studied and a characterization of this new family of copulas in terms of the Markov \(*\)-product is established.

Keywords

Copulas Dependence Probability measures Singular measures 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the grant MTM2014-60594-P (partially supported by FEDER) from the Spanish Ministry of Economy and Competitiveness. The first author has been partially supported by INdAM–GNAMPA Project 2017 “Bounds for Risk Functionals in Dependence Models”.

References

  1. Alfonsi, A., Brigo, D. (2005). New families of copulas based on periodic functions. Communications in Statistics Theory and Methods, 34(7), 1437–1447.MathSciNetCrossRefGoogle Scholar
  2. Ambrosio, L., Fusco, N., Pallara, D. (2000). Functions of bounded variation and free discontinuity problems. New York: The Clarendon Press, Oxford University Press.zbMATHGoogle Scholar
  3. Brown, J. R. (1965). Doubly stochastic measures and Markov operators. The Michigan Mathematical Journal, 12, 367–375.MathSciNetCrossRefGoogle Scholar
  4. Brown, J. R. (1966). Spatially homogeneous Markov operators. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(4), 279–286.MathSciNetCrossRefGoogle Scholar
  5. Darsow, W. F., Nguyen, B., Olsen, E. T. (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36(4), 600–642.MathSciNetzbMATHGoogle Scholar
  6. Durante, F., Sempi, C. (2016). Principles of Copula Theory. Boca Raton, FL: CRC Press.zbMATHGoogle Scholar
  7. Durante, F., Fernández-Sánchez, J., Trutschnig, W. (2015). A typical copula is singular. Journal of Mathematical Analysis and Applications, 430, 517–527.MathSciNetCrossRefGoogle Scholar
  8. Falconer, K. (2014). Mathematical foundations and applications. Fractal geometry (3rd ed.). Chichester: Wiley.Google Scholar
  9. Fernández-Sánchez, J., Trutschnig, W. (2015). Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and iterated function systems. Journal of Theoretical Probability, 28(4), 1311–1336.MathSciNetCrossRefGoogle Scholar
  10. Fernández-Sánchez, J., Trutschnig, W. (2016). Some members of the class of (quasi-)copulas with given diagonal from the Markov kernel perspective. Communications in Statistics Theory and Methods, 45, 1508–1526.MathSciNetCrossRefGoogle Scholar
  11. Fredricks, G. A., Nelsen, R. B., Rodríguez-Lallena, J. A. (2005). Copulas with fractal supports. Insurance: Mathematics & Economics, 37(1), 42–48.Google Scholar
  12. Jones, M. C., Pewsey, S., Kato, A. (2015). On a class of circulas: Copulas for circular distributions. Annals of the Institute of Statistical Mathematics, 67(5), 843–862.MathSciNetCrossRefGoogle Scholar
  13. Klenke, A. (2008). Probability theory. A comprehensive course. Berlin: Springer.zbMATHGoogle Scholar
  14. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E. R. (2012). Fractal-based methods in analysis. New York: Springer.CrossRefGoogle Scholar
  15. Lange, K. (1973). Decompositions of substochastic transition functions. Proceedings of the American Mathematical Society, 37, 575–580.MathSciNetCrossRefGoogle Scholar
  16. Mikusiński, P., Taylor, M. D. (2009). Markov operators and \(n\)-copulas. Annales Polonici Mathematici, 96(1), 75–95.MathSciNetCrossRefGoogle Scholar
  17. Mikusiński, P., Taylor, M. D. (2010). Some approximations of \(n\)-copulas. Metrika, 72(3), 385–414.MathSciNetCrossRefGoogle Scholar
  18. Nelsen, R. B. (2006). An introduction to copulas (2nd ed.). Springer series in statistics. New York: Springer.Google Scholar
  19. Olsen, E. T., Darsow, W. F., Nguyen, B. (1996). Copulas and Markov operators. In L. Rüschendorf, B. Schweizer, M. Taylor (eds.), Proceedings of the AMS-IMS-SIAM joint summer research conference on distributions with fixed marginals, doubly stochastic measures and Markov operators held in Seattle, WA, August 1–5, 1993, IMS lecture notes monograph series, volume 28 (pp. 244–259). Institute of Mathematical Statistics, Hayward, CA.Google Scholar
  20. Phelps, R. R. (2001). Lectures on Choquet’s theorem. Lecture notes in mathematics (Vol. 1757, 2nd ed.). Berlin: Springer.Google Scholar
  21. Segers, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli, 18(3), 764–782.MathSciNetCrossRefGoogle Scholar
  22. Stromberg, K. (1972). An elementary proof of Steinhaus’s theorem. Proceedings of the American Mathematical Society, 36, 308.MathSciNetzbMATHGoogle Scholar
  23. Tao, T. (2011). An introduction to measure theory, graduate studies in mathematics, Vol. 126. Providence, RI: American Mathematical Society.Google Scholar
  24. Trutschnig, W. (2011). On a strong metric on the space of copulas and its induced dependence measure. Journal of Mathematical Analysis and Applications, 384(2), 690–705.MathSciNetCrossRefGoogle Scholar
  25. Trutschnig, W. (2013). On Cesáro convergence of iterates of the star product of copulas. Statistics & Probability Letters, 83(1), 357–365.MathSciNetCrossRefGoogle Scholar
  26. Trutschnig, W., Fernández Sánchez, J. (2012). Idempotent and multivariate copulas with fractal support. Journal of Statistical Planning and Inference, 142(12), 3086–3096.MathSciNetCrossRefGoogle Scholar
  27. Trutschnig, W., Fernández Sánchez, J. (2014). Copulas with continuous, strictly increasing singular conditional distribution functions. Journal of Mathematical Analysis and Applications, 410(2), 1014–1027.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2018

Authors and Affiliations

  • Fabrizio Durante
    • 1
  • Juan Fernández Sánchez
    • 2
  • Wolfgang Trutschnig
    • 3
  1. 1.Dipartimento di Scienze dell’EconomiaUniversità del SalentoLecceItaly
  2. 2.Grupo de Investigación de Análisis MatemáticoUniversidad de AlmeríaAlmeríaSpain
  3. 3.Department for MathematicsUniversity of SalzburgSalzburgAustria

Personalised recommendations