Testing for a \(\delta \)-neighborhood of a generalized Pareto copula

  • Stefan AulbachEmail author
  • Michael Falk
  • Timo Fuller


A multivariate distribution function F is in the max-domain of attraction of an extreme value distribution if and only if this is true for the copula corresponding to F and its univariate margins. Aulbach et al.  (Bernoulli 18(2), 455–475, 2012. have shown that a copula satisfies the extreme value condition if and only if the copula is tail equivalent to a generalized Pareto copula (GPC). In this paper, we propose a \(\chi ^2\)-goodness-of-fit test in arbitrary dimension for testing whether a copula is in a certain neighborhood of a GPC. The test can be applied to stochastic processes as well to check whether the corresponding copula process is close to a generalized Pareto process. Since the p value of the proposed test is highly sensitive to a proper selection of a certain threshold, we also present graphical tools that make the decision, whether or not to reject the hypothesis, more comfortable.


Multivariate max-domain of attraction Multivariate extreme value distribution Copula D-norm Generalized Pareto copula \(\chi ^2\)-goodness-of-fit test Max-stable processes Functional max-domain of attraction 



The authors are grateful to Kilani Ghoudi for his hint to compute the asymptotic distribution of the above test statistics using Imhof’s (1961) method. The authors thank an anonymous associate editor and anonymous referee for their constructive notes and comments, from which this final version of the paper has benefited a lot.

Supplementary material

10463_2018_657_MOESM1_ESM.pdf (745 kb)
Supplementary material 1 (pdf 745 KB)


  1. Anderson, T. W., Stephens, M. A. (1997). The continuous and discrete Brownian bridges: Representations and applications. Linear Algebra and Its Applications, 264, 145–171.
  2. Aulbach, S., Bayer, V., Falk, M. (2012). A multivariate piecing-together approach with an application to operational loss data. Bernoulli, 18(2), 455–475.
  3. Aulbach, S., Falk, M., Hofmann, M. (2013). On max-stable processes and the functional \(D\)-norm. Extremes, 16(3), 255–283.
  4. Berghaus, B., Bücher, A., Dette, H. (2013) Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence. Journal de la Société Française de Statistique, 154(1), 116–137.
  5. Bücher, A., Segers, J., Volgushev, S. (2014). When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs. The Annals of Statistics, 42(4), 1598–1634.
  6. Charpentier, A., Segers, J. (2009). Tails of multivariate Archimedean copulas. Journal of Multivariate Analysis, 100(7), 1521–1537.
  7. de Haan, L., Lin, T. (2001). On convergence toward an extreme value distribution in \({C}[0,1]\). The Annals of Probability, 29(1), 467–483.
  8. de Haan, L., Ferreira, A. (2006). Extreme value theory: An introduction. Springer series in operations research and financial engineering. New York: Springer., see and for corrections and extensions.
  9. Deheuvels, P. (1978). Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes. Publications de l’Institut de statistique de l’Université de Paris, 23, 1–36.zbMATHGoogle Scholar
  10. Deheuvels, P. (1983). Point processes and multivariate extreme values. Journal of Multivariate Analysis, 13(2), 257–272. Scholar
  11. Dietrich, D., de Haan, L., Hüsler, J. (2002). Testing extreme value conditions. Extremes, 5(1), 71–85.
  12. Drees, H., de Haan, L., Li, D. (2006). Approximations to the tail empirical distribution function with application to testing extreme value conditions. Journal of Statistical Planning and Inference, 136(10), 3498–3538.
  13. Einmahl, J. H. J., de Haan, L., Li, D. (2006). Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition. The Annals of Statistics, 34(4), 1987–2014.
  14. Falk, M., Hofmann, M. (2012). Sojourn times and the fragility index. Stochastic Processes and their Applications, 122(3), 1110–1128.
  15. Falk, M., Hüsler, J., Reiss, R.-D. (2011). Laws of small numbers: Extremes and rare events (3rd ed.). Basel: Springer.
  16. Falk, M., Michel, R. (2009). Testing for a multivariate generalized Pareto distribution. Extremes, 12(1), 33–51.
  17. Fortiana, J., Cuadras, C. M. (1997). A family of matrices, the discretized Brownian bridge, and distance-based regression. Linear Algebra and Its Applications, 264, 173–188.
  18. Galambos, J. (1987). The asymptotic theory of extreme order statistics (2nd ed.). Malabar: Krieger.zbMATHGoogle Scholar
  19. Ghoudi, K., Khoudraji, A., Rivest, L. P. (1998). Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Canadian Journal of Statistics, 26(1), 187–197.
  20. Giné, E., Hahn, M., Vatan, P. (1990). Max-infinitely divisible and max-stable sample continuous processes. Probability Theory and Related Fields, 87(2), 139–165.
  21. Hofmann, M. (2013). On the hitting probability of max-stable processes. Statistics and Probability Letters, 83(11), 2516–2521. Scholar
  22. Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48(3–4), 419–426. Scholar
  23. Kojadinovic, I., Segers, J., Yan, J. (2011). Large-sample tests of extreme-value dependence for multivariate copulas. Canadian Journal of Statistics, 39(4), 703–720.
  24. Kortschak, D., Albrecher, H. (2009). Asymptotic results for the sum of dependent non-identically distributed random variables. Methodology and Computing in Applied Probability, 11(3), 279–306.
  25. Larsson, M., Nešlehová, J. (2011). Extremal behavior of Archimedean copulas. Advances in Applied Probability, 43(1), 195–216.
  26. McNeil, A. J., Nešlehová, J. (2009). Multivariate Archimedean copulas, \(d\)-monotone functions and \(\ell _1\)-norm symmetric distributions. The Annals of Statistics, 37(5B), 3059–3097.
  27. Reiss, R.-D., Thomas, M. (2007). Statistical analysis of extreme values: With applications to insurance, finance, hydrology and other fields (3rd ed.). Basel: Birkhäuser.
  28. Reiss, R.-D. (1989). Approximate distributions of order statistics: With applications to nonparametric statistics. Springer series in statistics. New York: Springer. Scholar
  29. Smith, R. L. (1990). Max-stable processes and spatial extremes., preprint, University of North Carolina.
  30. Takahashi, R. (1988). Characterizations of a multivariate extreme value distribution. Advances in Applied Probability, 20(1), 235–236. Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2018

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WürzburgWürzburgGermany

Personalised recommendations