Poisson source localization on the plane: change-point case

  • C. Farinetto
  • Yu. A.  KutoyantsEmail author
  • A. Top


We present a detection problem where several spatially distributed sensors observe Poisson signals emitted from a single radioactive source of unknown position. The measurements at each sensor are modeled by independent inhomogeneous Poisson processes. A method based on Bayesian change-point estimation is proposed to identify the location of the source’s coordinates. The asymptotic behavior of the Bayesian estimator is studied. In particular, the consistency and the asymptotic efficiency of the estimator are analyzed. The limit distribution and the convergence of the moments are also described. The similar statistical model could be used in GPS localization problems.


Inhomogeneous Poisson process Change-point problem Bayesian estimator Likelihood ratio process Radioactive source Sensors GPS localization 



We would like to thank the both Rewieres for many useful comments.


  1. Baidoo-Williams, H. E., Mudumbai, R., Bai, E., Dasgupta, S. (2015). Some theoretical limits on nuclear source localization and tracking. In Proceedings of the information theory and applications workshop (ITA) (pp. 270–274).Google Scholar
  2. Chao, J. J., Drakopoulos, E., Lee, C. C. (1987). Evidential reasoning approach to distributed multiple-hypothesis detection. In Proceedings of the conference on decision and control (pp. 1826–1831).Google Scholar
  3. Chernoyarov, O. V., Kutoyants, Yu. A. (2018). Poisson source localization on the plane. Smooth case. arXiv:1806.06382 (submitted).
  4. Chin, J., Rao, N. S. V., Yau, D. K. Y., Shankar, M., Yang, J., Hou, J. C., et al. (2010). Identification of low-level point radioactive sources using a sensor network. ACM Transactions on Sensor Networks, 7(3), 21.CrossRefGoogle Scholar
  5. Chong, C. Y., Kumar, S. P. (2003). Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE, 91(8), 1247–1256.CrossRefGoogle Scholar
  6. Dabye, A. S., Farinetto, C., Kutoyants, Yu. A. (2003). On Bayesian estimators in misspecified change-point problem for a Poisson process. Statistics and Probabability Letters, 61(1), 17–30.Google Scholar
  7. Dachian, S. (2003). Estimation of cusp location by Poisson observations. Statatistical Inference for Stochastic Processes, 6(1), 1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Dachian, S., Chernoyarov, O. V., Kutoyants, Yu. A. (2018a). Poisson source localization on the plane. Cusp case. arXiv:1806.06400 (submitted)
  9. Dachian, S., Kordzakhia, N., Kutoyants, Yu. A., Novikov, A. (2018b). Estimation of cusp location of stochastic processes: A survey. Statatistical Inference for Stochastic Processes, 21(2), 345–362.Google Scholar
  10. Evans, R. D. (1963). The atomic nucleus. New York: McGraw-Hill.zbMATHGoogle Scholar
  11. Howse, J. W., Ticknor, L. O., Muske, K. R. (2011). Least squares estimation techniques for position tracking of radioactive sources. Automatica, 37, 1727–1737.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Ibragimov, I. A., Khasminskii, R. Z. (1981). Statistical estimation. Asymptotic theory. New York: Springer.CrossRefGoogle Scholar
  13. Karr, A. F. (1991). Point processes and their statistical inference. New York: Marcel Dekker.zbMATHGoogle Scholar
  14. Knoll, G. F. (2010). Radiation detection and measurement. New York: Wiley.Google Scholar
  15. Kutoyants, Yu. A. (1998). Statistical inference for spatial Poisson processes. New York: Springer.Google Scholar
  16. Liu, Z., Nehorai, A. (2004). Detection of particle sources with directional detector arrays. In Sensor array and multichannel signal processing workshop proceedings (pp. 196–200).Google Scholar
  17. Luo, X. (2013). GPS stochastic modelling. New York: Springer.CrossRefzbMATHGoogle Scholar
  18. Magee, M. J., Aggarwal, J. K. (1985). Using multisensory images to derive the structure of three-dimensional objects: A review. Computer Vision, Graphics and Image Processing, 32(2), 145–157.CrossRefGoogle Scholar
  19. Mandel, L. (1958). Fluctuation of photon beams and their correlations. Proceedings of the Physical Society (London), 72, 1037–1048.CrossRefGoogle Scholar
  20. Morelande, M. R., Ristic, B., Gunatilaka, A. (2007). Detection and parameter estimation of multiple radioactive sources. In Proceedings of the 10th international conference on information fusion (pp. 1–7).Google Scholar
  21. Ogata, Y. (1994). Seismological applications of statistical methods for point-process modeling. In H. Bozdogan (Ed.), Proceedings of the First U.S./Japan conference on the Frontiers of statistical modeling: An informational approach (pp. 137–163).Google Scholar
  22. Pahlajani, C. D., Poulakakis, I., Tanner, H. G. (2013). Decision making in sensor networks observing Poisson processes. In Proceedings of the 21st Mediterranean conference on control and automation (pp. 1230–1235).Google Scholar
  23. Rao, N. S. V., Shankar, M., Chin, J. C., Yau, D. K. Y., Srivathsan, S., Iyengar, S. S., et al. (2008). Identification of low-level point radioactive sources using a sensor network. In Proceedings of the 7th international conference on information processing in sensor networks (pp. 493–504).Google Scholar
  24. Snyder, D. R., Miller, M. I. (1991). Random point processes in time and space. New York: Springer.CrossRefzbMATHGoogle Scholar
  25. Streit, R. L. (2010). Poisson point processes: Imaging, tracking, and sensing. Boston: Springer.Google Scholar
  26. Zhao, F., Guibas, L. (2004). Wireless sensor network: An information processing approach. San Francisco: Morgan Kauffman.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2019

Authors and Affiliations

  1. 1.Department of MathematicsLe Mans UniversityLe MansFrance
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.National Research University, “MPEI”MoscowRussia

Personalised recommendations