Testing linearity against threshold effects: uniform inference in quantile regression

  • Antonio F. Galvao
  • Kengo Kato
  • Gabriel Montes-Rojas
  • Jose Olmo


This paper develops a uniform test of linearity against threshold effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the limiting null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values. The proposed simulation method makes the test easy to implement. Monte Carlo experiments show that the proposed test has good size and reasonable power against non-linear threshold models.


Linearity test Quantile regression Threshold model 



The authors would like to express their appreciation to Roger Koenker, Zhongjun Qu, Zhijie Xiao, and to the participants at the 2009 North American Summer Meeting of the Econometrics Society and the 2009 Far East and South Asia Meeting of the Econometrics Society for helpful comments and discussions. Kato’s research was partially supported by Grant-in-Aid for Young Scientists (B) (22730179) from the JSPS. Jose Olmo acknowledges financial support from Ministerio de Economia y Competitividad ECO2011-22650 project.


  1. Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, 817–858.Google Scholar
  2. Andrews, D. W. K., Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62, 1383–1414.Google Scholar
  3. Angrist, J., Chernozhukov, V., Fernández-Val, I. (2006). Quantile regression under misspecification, with an application to the US wage structure. Econometrica, 74, 539–563.Google Scholar
  4. Arcones, M., Yu, B. (1995). Central limit theorems for empirical and \(U\)-processes of stationary mixing sequences. Journal of Theoretical Probability, 7, 47–71.Google Scholar
  5. Cai, Y. (2010). Forecasting for quantile self-exciting threshold autoregressive time series models. Biometrika, 97, 199–208.Google Scholar
  6. Cai, Y., Stander, J. (2008). Quantile self-exciting threshold time series models. Journal of Time Series Analysis, 29, 187–202.Google Scholar
  7. Caner, M. (2002). A note on least absolute deviation estimation of a threshold model. Econometric Theory, 18, 800–814.Google Scholar
  8. Carrasco, M. (2002). Misspecified structural change, threshold, and Markov-switching models. Journal of Econometrics, 109, 239–273.Google Scholar
  9. Chan, K. S. (1990). Testing for threshold autoregression. Annals of Statistics, 18, 1886–1894.Google Scholar
  10. Chernozhukov, V., Fernández-Val, I. (2005). Subsampling inference on quantile regression processes. Sankhya, 67, 253–276.Google Scholar
  11. Davydov, Y., Lifshits, M., Smorodina, N. (1998). Local Properties of Distributions of Stochastic Functions (Transaction of Mathematical Monographs, Vol. 173). Providence: American Mathematical Society.Google Scholar
  12. Davies, R. (1977). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 64, 247–254.Google Scholar
  13. Davies, R. (1987). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 74, 33–43.Google Scholar
  14. Escanciano, J. C., Velasco, C. (2010). Specification tests of parametric dynamic conditional quantiles. Journal of Econometrics, 159, 209–221.Google Scholar
  15. Fan, J., Yao, Q. (2005). Nonlinear time series: nonparametric and parametric methods. Berlin: Springer.Google Scholar
  16. Gutenbrunner, C., Jurečková, J. (1992). Regression rank scores and regression quantiles. Annals of Statistics, 20, 305–330.Google Scholar
  17. Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64, 413–430.Google Scholar
  18. Hansen, B. E. (1997). Inference in TAR models. Studies in Nonlinear Dynamics and Econometrics, 2, 1–14.Google Scholar
  19. Hansen, B. E. (2000). Sample splitting and threshold regression. Econometrica, 68, 575–603.Google Scholar
  20. He, X., Zhu, L. X. (2003). A lack-of-fit test for quantile regression. Journal of the American Statistical Association, 98, 1013–1022.Google Scholar
  21. Horowitz, J. L., Spokoiny, V. G. (2002). An adaptive, rate-optimal test of linearity of median regression models. Journal of the American Statistical Association, 97, 822–835.Google Scholar
  22. Kato, K. (2009). Asyptotics for argmin processes: convexity arguments. Journal of Multivariate Analysis, 100, 1816–1829.Google Scholar
  23. Knight, K. (1998). Limiting distribution for \(L_{1}\) regression estimators under general conditions. Annals of Statistics, 26, 755–770.Google Scholar
  24. Koenker, R. (2005). Quantile regression. New York: Cambridge University Press.Google Scholar
  25. Koenker, R., Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.Google Scholar
  26. Koenker, R., Machado, J. A. F. (1999). Goodness-of-fit and related inference processes for quantile regression. Journal of the American Statistical Association, 94, 1296–1310.Google Scholar
  27. Koenker, R., Xiao, Z. (2002). Inference on the quantile regression process. Econometrica, 70, 1583–1612.Google Scholar
  28. Komunjer, I., Vuong, Q. (2010a). Semiparametric efficiency bound in time-series models for conditional quantiles. Econometric Theory, 26, 383–405.Google Scholar
  29. Komunjer, I., Vuong, Q. (2010b). Efficient estimation in dynamic conditional quantile models. Journal of Econometrics, 157, 272–285.Google Scholar
  30. Lee, S., Seo, M. H., Shin, Y. (2011). Testing for threshold effects in regression models. Journal of the American Statistical Association, 106, 220–231.Google Scholar
  31. Nobel, A., Dembo, A. (1993). A note on uniform laws of averages for dependent processes. Statistics and Probability Letters, 17, 169–172.Google Scholar
  32. Otsu, T. (2008). Conditional empirical likelihood estimation and inference for quantile regression. Journal of Econometrics, 142, 508–538.Google Scholar
  33. Powell, J. L. (1991). Estimation of monotonic regression models under quantile restrictions. In W. Barnett, J. L. Powell, G. Tauchen (Eds.), Nonparametric and semiparametric methods in econometrics. Cambridge: Cambridge University Press.Google Scholar
  34. Qu, Z. (2008). Testing for structural change in quantile regression. Journal of Econometrics, 146, 170–184.Google Scholar
  35. Su, L., White, H. (2012). Conditional independence specification testing for dependent processes with local polynomial quantile regression. Advances in Econometrics, 29, 355–434.Google Scholar
  36. Su, L., Xiao, Z. (2008). Testing for parameter stability in quantile regression models. Statistics and Probability Letters, 78, 2768–2775.Google Scholar
  37. Tong, H. (1983). Threshold Models in Non-linear Time Series Analysis (Lecture Notes in Statistics). New York: Springer.Google Scholar
  38. Tong, H., Lim, K. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society Series B, 4, 245–292.Google Scholar
  39. Tsay, R. (1989). Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, 18, 931–955.Google Scholar
  40. van der Vaart, A. W., Wellner, J. A. (1996). Weak convergence and empirical processes: with applications to statistics. New York: Springer.Google Scholar
  41. Whang, Y.-J. (2005). Consistent specification testing for quantile regression models. In D. Corbae, S. N. Durlauf, B. E. Hansen (Eds.), Frontiers of analysis and applied research: essays in honor of Peter C.B. Phillips. Cambridge: Cambridge University Press.Google Scholar
  42. Zheng, J. X. (1998). A consistent nonparametric test of parametric regression model under conditional quantile restrictions. Econometric Theory, 14, 123–138.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2013

Authors and Affiliations

  • Antonio F. Galvao
    • 1
  • Kengo Kato
    • 2
  • Gabriel Montes-Rojas
    • 3
  • Jose Olmo
    • 4
  1. 1.Department of EconomicsUniversity of IowaIowaUSA
  2. 2.Graduate School of EconomicsUniversity of TokyoTokyoJapan
  3. 3.Department of EconomicsCity University LondonLondonUK
  4. 4.Centro Universitario de la Defensa and ARAIDAcademia General MilitarZaragozaSpain

Personalised recommendations