Empirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random

Article

Abstract

This paper develops the empirical likelihood (EL) inference on parameters and baseline function in a semiparametric nonlinear regression model for longitudinal data in the presence of missing response variables. We propose two EL-based ratio statistics for regression coefficients by introducing the working covariance matrix and a residual-adjusted EL ratio statistic for baseline function. We establish asymptotic properties of the EL estimators for regression coefficients and baseline function. Simulation studies are used to investigate the finite sample performance of our proposed EL methodologies. An AIDS clinical trial data set is used to illustrate our proposed methodologies.

Keywords

Empirical likelihood Imputation Longitudinal data Missing at random Semiparametric nonlinear regression model 

Notes

Acknowledgments

The authors thank two anonymous referees for their helpful comments and suggestions which have substantially improved the readability and the presentation of this paper. The research was fully supported by grants from the National Natural Science Foundation of China (10961026, 11171293), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20115301110004) and the Natural Science Key Project of Yunnan Province (No. 2010CC003).

References

  1. Bates, D. M., Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications. New York: Wiley.Google Scholar
  2. Chen, Q. X., Ibrahim, J. G., Chen, M. H., Senchaudhuri, P. (2008). Theory and inference for regression models with missing responses and covariates. Journal of Multivariate Analysis, 99, 1302–1331.Google Scholar
  3. Chen, S. X., Zhong, P. S. (2010). ANOVA for longitudinal data with missing values. The Annals of Statistics, 38, 3630–3659.Google Scholar
  4. Ciuperca, G. (2011). Empirical likelihood for nonlinear models with missing responses. Journal of Statistical Computation and Simulation. doi: 10.1080/00949655.2011.635305.
  5. Fan, J., Li, R. Z. (2004). New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. Journal of the American Statistical Association, 99, 710–723.Google Scholar
  6. Green, P. J. (1987). Penalized likelihhod for general semiparametric regression models. International Statistical Review, 55, 245–259.Google Scholar
  7. Ibrahim, J. G., Chen, M. H., Lipsitz, S. R. (2001). Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable. Biometrika, 88, 551–564.Google Scholar
  8. Kim, J. K., Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association, 106, 157–165.Google Scholar
  9. Lee, S. Y., Tang, N. S. (2006). Analysis of nonlinear structural equation models with nonignorable missing covariates and ordered categorical data. Statistica Sinica, 16, 1117–1141.Google Scholar
  10. Li, R., Nie, L. (2008). Efficient statistical inference procedures for partially nonlinear models and their applications. Biometrics, 64, 904–911.Google Scholar
  11. Liang, H., Wang, S. J., Carroll, R. J. (2007). Partially linear models with missing response variables and error-prone covariates. Biometrika, 94, 185–198.Google Scholar
  12. Liang, H., Wu, H., Carroll, R. J. (2003). The relationship between virologic responses in AIDS clinical research using mixed-effects varying-coefficient models with measurement error. Biostatistics, 4, 297–312.Google Scholar
  13. Liang, H., Qin, Y. S. (2008). Empirical likelihood based inference for partially linear models with missing covariates. Australian New Zealand Journal of Statistics, 50, 347–359.Google Scholar
  14. Lin, X., Carroll, R. J. (2001). Semiparametric regression for clustered data using generalized estimating equations. Journal of the American Statistical Association, 96, 1045–1056.Google Scholar
  15. Little, R. J. A., Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). New York: John Wiley.Google Scholar
  16. Mellors, J. W., Rinaldo, C. R., Gupta, P., White, R. M., Todd, J. A., Kingsley, L. A. (1996). Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science, 272, 1167–1170.Google Scholar
  17. Müller, U. U. (2009). Estimating linear functionals in nonlinear regression with responses missing at random. The Annals of Statistics, 37, 2245–2277.Google Scholar
  18. Owen, A. B. (2001). Empirical Likelihood. New York: Chapman&Hall.Google Scholar
  19. Ruppert, D., Wand, M. P., Carroll, R. J. (2003). Semiparametric Regression. New York: Cambridge University Press.Google Scholar
  20. Saag, M. S., Holodniy, M., Kuritzkes, D. R., OBrien, W. A., Coombs, R., Poscher, M. E., et al. (1996). HIV viral load markers in clinical practice. Nature Medicine., 2, 625–629.Google Scholar
  21. Shardell, M., Miller, R. R. (2008). Weighted estimating equations for longitudinal studies with death and non-monotone missing time-dependent covariates and outcomes. Statistics in Medicine, 27, 1008–1025.Google Scholar
  22. Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. The Annals of Statistics, 8, 1348–1360.Google Scholar
  23. Wand, M. P., Jones, M. C. (1995). Kernel Smoothing. New York: Chapman, Hall.Google Scholar
  24. Wang, Y., Ke, C. (2009). Smoothing spline semiparametric nonlinear regression models. Journal of Computational and Graphical Statistics, 18, 165–183.Google Scholar
  25. Wang, Q. H., Lindon, O., Härdle, W. (2004). Semiparametric regression analysis with missing response at random. Journal of the American Statistical Association, 99, 334–345.Google Scholar
  26. Wu, C. J. F. (1981). Asymptotic theory of nonlinear least squares estimation. The Annal of Statistics, 9, 501–513.Google Scholar
  27. Xue, L. G., Xue, D. (2011). Empirical Likelihood for semiparametric regression models with missing reponses. Journal of Multivariate Analysis, 102, 723–740.Google Scholar
  28. Yates, F. (1933). The analysis of replicated experiments when the field results are incomplete. The Empire Journal of Experimental Agriculture, 1, 129–142.Google Scholar
  29. Yi, G. Y., Cook, R. J. (2002). Marginal Methods for Incomplete Longitudinal Data Arising in Clusters. Journal of the American Statistical Association, 97, 1071–1080.Google Scholar
  30. Zeger, S. L., Diggle, P. L. (1994). Semiparametric model for longitudinal data with application to CD4 Cell numbers in HIV seroconveriers. Biometrics, 50, 689–699.Google Scholar
  31. Zhu, Z. Y., Tang, N. S., Wei, B. C. (2000). On confidence regions of semiparametric nonlinear regression models (a geometric approach). Acta Mathematica Scientia, 20, 68–75.Google Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2012

Authors and Affiliations

  1. 1.Department of StatisticsYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations