Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds

  • Abhishek Bhattacharya
  • David B. DunsonEmail author


This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels.


Nonparametric Bayes Density estimation Posterior consistency Sample-dependent prior Riemannian manifold Hypersphere Shape space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barron A. R. (1989) Uniformly powerful goodness of fit tests. Annals of Statistics 17: 107–124MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bhattacharya A., Dunson D. (2010a) Nonparametric Bayesian density estimation on manifolds with applications to planar shapes. Biometrika 97(4): 851–865MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bhattacharya, A., Dunson, D. (2010b). Nonparametric Bayes classification and hypothesis testing on manifolds. Discussion Paper, Department of Statistical Science, Duke University.Google Scholar
  4. Bhattacharya R. N., Patrangenaru V. (2003) Large sample theory of intrinsic and extrinsic sample means on manifolds. Annals of Statistics 31: 1–29MathSciNetCrossRefGoogle Scholar
  5. Dryden I. L., Mardia K. V. (1998) Statistical Shape Analysis. Wiley, New YorkzbMATHGoogle Scholar
  6. Escobar M. D., West M. (1995) Bayesian density-estimation and inference using mixtures. Journal of the American Statistical Association 90: 577–588MathSciNetzbMATHGoogle Scholar
  7. Fisher R. A. (1953) Dispersion on a sphere. Proceedings of the Royal Society of London A 1130: 295–305CrossRefGoogle Scholar
  8. Ghosal S., Ghosh J. K., Ramamoorthi R. V. (1999) Posterior consistency of dirichlet mixtures in density estimation. Annals of Statistics 27: 143–158MathSciNetzbMATHCrossRefGoogle Scholar
  9. Ghosh J. K., Ramamoorthi R. V. (2003) Bayesian Nonparametrics. Springer, New YorkzbMATHGoogle Scholar
  10. Hirsch M. (1976) Differential Topology. Springer, New YorkzbMATHGoogle Scholar
  11. Kendall D. G. (1984) Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16: 81–121MathSciNetzbMATHCrossRefGoogle Scholar
  12. LeCam L. (1973) Convergence of estimates under dimensionality restrictions. Annals of Statistics 1: 38–53MathSciNetCrossRefGoogle Scholar
  13. Lennox K. P., Dahl D. B., Vannucci M., Tsai J. W. (2009) Density estimation for protein conformation angles using a bivariate von Mises distribution and Bayesian nonparametrics. Journal of the American Statistical Association 104: 586–596MathSciNetCrossRefGoogle Scholar
  14. Lo A. Y. (1984) On a class of Bayesian nonparametric estimates. 1. density estimates. Annals of Statistics 12: 351–357MathSciNetzbMATHCrossRefGoogle Scholar
  15. Mallik R. K. (2003) The pseudo-wishart distribution and its application to mimo systems. IEEE Transactions on Information Theory 49(10): 2761–2769MathSciNetCrossRefGoogle Scholar
  16. Schwartz L. (1965) On Bayes procedures. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 4: 10–26zbMATHCrossRefGoogle Scholar
  17. Sparr G. (1992) Depth-computations from polihedral images Proceedings of 2nd European. Conference on Computer Vision ECCV 2: 378–386Google Scholar
  18. von Mises R. V. (1918) Uber die “Ganzzahligkeit” der Atomgewicht und verwandte Fragen. Physik Z 19: 490–500Google Scholar
  19. Watson G. S., Williams E. J. (1953) Construction of significance tests on the circle and sphere. Biometrika 43: 344–352MathSciNetGoogle Scholar
  20. Wu Y., Ghosal S. (2008) Kullback-Leibler property of kernel mixture priors in Bayesian density estimation. Electronic Journal of Statistics 2: 298–331MathSciNetzbMATHCrossRefGoogle Scholar
  21. Wu Y., Ghosal S. (2010) The L 1-consistency of dirichlet mixtures in multivariate bayesian density estimation on bayes procedures. Journal of Mutivariate Analysis 101: 2411–2419MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2011

Authors and Affiliations

  1. 1.Indian Statistical InstituteKolkataIndia
  2. 2.Department of Statistical ScienceDuke UniversityDurhamUSA

Personalised recommendations