Decompositions of binomial ideals



We present Binomials, a package for the computer algebra system Macaulay 2, which specializes well-known algorithms to binomial ideals. These come up frequently in algebraic statistics and commutative algebra, and it is shown that significant speedup of computations like primary decomposition is possible. While central parts of the implemented algorithms go back to a paper of Eisenbud and Sturmfels, we also discuss a new algorithm for computing the minimal primes of a binomial ideal. All decompositions make significant use of combinatorial structure found in binomial ideals, and to demonstrate the power of this approach we show how Binomials was used to compute primary decompositions of commuting birth and death ideals of Evans et al., yielding a counterexample for their conjectures.


Algebraic statistics Binomial ideals Commuting birth and death ideals Computational commutative algebra Primary decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4ti2 team (2007). 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces. Available at
  2. Altmann K. (2000) The chain property for the associated primes of \({\mathcal{A}}\) -graded ideals. Mathematical Research Letters 7: 565–575MATHMathSciNetGoogle Scholar
  3. Bigatti A.M., Scala R.L., Robbiano L. (1999) Computing toric ideals. Journal of Symbolic Computation 27(4): 351–365MATHCrossRefMathSciNetGoogle Scholar
  4. Cox D.A., Little J.B., O’Shea D. (1996) Ideals, varieties, and algorithms (2nd ed.). Undergraduate texts in mathematics. Springer, New YorkGoogle Scholar
  5. Dickenstein, A., Matusevich, L., Miller, E. (2008). Combinatorics of binomial primary decomposition. Mathematische Zeitschrift (to appear).Google Scholar
  6. Drton M., Sturmfels B., Sullivant S. (2009) Lectures on algebraic statistics. Oberwolfach Seminars (Vol. 39). Springer, Birkhäuser, BerlinGoogle Scholar
  7. Eisenbud D. (1995) Commutative algebra: With a view toward algebraic geometry. Graduate texts in mathematics (Vol. 150). Springer, New YorkGoogle Scholar
  8. Eisenbud D., Sturmfels B. (1996) Binomial ideals. Duke Mathematical Journal 84(1): 1–45MATHCrossRefMathSciNetGoogle Scholar
  9. Eisenbud D., Grayson D.R., Stillman M.E., Sturmfels B. (2001) Computations in algebraic geometry with Macaulay 2. Algorithms and computations in Mathematics (Vol. 8). Springer, New YorkGoogle Scholar
  10. Evans S., Sturmfels B., Uhler C. (2010) Commuting birth-death processes. Annals of Applied Probability 20(1): 238–266MATHCrossRefMathSciNetGoogle Scholar
  11. Fink, A. (2009). The binomial ideal of the intersection axiom for conditional probabilities. preprint arXiv:09021495Google Scholar
  12. Fulton W. (1993) Introduction to toric varieties. Annals of Mathematical Studies. Princeton University Press, PrincetonGoogle Scholar
  13. Geiger D., Meek C., Sturmfels B. (2006) On the toric algebra of graphical models. The Annals of Statistics 34(5): 1463–1492MATHCrossRefMathSciNetGoogle Scholar
  14. Gilmer R. (1984) Commutative semigroup rings. University of Chicago Press, ChicagoMATHGoogle Scholar
  15. Hemmecke R., Malkin P. (2009) Computing generating sets of lattice ideals. Journal of Symbolic Computation 44(10): 1493–1476MATHCrossRefMathSciNetGoogle Scholar
  16. Hemmecke R., Morton J., Shiu A., Sturmfels B., Wienand O. (2008) Three counter-examples on semi-graphoids. Combinatorics, Probability and Computation 17: 239–257MATHMathSciNetGoogle Scholar
  17. Herzog, J., Hibi, T., Hreinsdóttir, F., Kahle, T., Rauh, J. (2009). Binomial edge ideals and conditional independence statements. Advances in Applied Mathematics (in press).Google Scholar
  18. Hoşten S., Sturmfels B. (1995) Grin: An implementation of groebner bases for integer programming. In: Balas E., Clausen J. (eds) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science. Springer, Berlin, pp 267–276Google Scholar
  19. Hungerford T.W. (1974) Algebra, graduate texts in mathematics (Vol. 73). Springer, New YorkGoogle Scholar
  20. Latouche G., Ramaswami V. (1999) Introduction to matrix analytic methods in stochastic modeling. Statistics and Applied Probability. SIAM, PhiladelphiaGoogle Scholar
  21. Miller E., Sturmfels B. (2005) Combinatorial commutative algebra. Graduate texts in mathematics (Vol. 227). Springer, BerlinGoogle Scholar
  22. Ojeda I., Piedra R. (2000) Cellular binomial ideals. primary decomposition of binomial ideals. Journal of Symbolic Computation 30: 383–400MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2010

Authors and Affiliations

  1. 1.Max-Planck-Institute for Mathematics in the ScienceLeipzigGermany

Personalised recommendations