Nonparametric analysis of doubly truncated data

Abstract

One of the principal goals of the quasar investigations is to study luminosity evolution. A convenient one-parameter model for luminosity says that the expected log luminosity, T*, increases linearly as θ 0· log(1  +  Z*), and T*(θ 0) = T*  −  θ 0· log(1  +  Z*) is independent of Z*, where Z* is the redshift of a quasar and θ 0 is the true value of evolution parameter. Due to experimental constraints, the distribution of T* is doubly truncated to an interval (U*, V*) depending on Z*, i.e., a quadruple (T*, Z*, U*, V*) is observable only when U* ≤ T* ≤ V*. Under the one-parameter model, T*(θ 0) is independent of (U*(θ 0), V*(θ 0)), where U*(θ 0) = U*  −  θ 0· log(1  +  Z*) and V*(θ 0) = V*  −  θ 0· log(1  +  Z*). Under this assumption, the nonparametric maximum likelihood estimate (NPMLE) of the hazard function of T*(θ 0) (denoted by ĥ) was developed by Efron and Petrosian (J Am Stat Assoc 94:824–834, 1999). In this note, we present an alternative derivation of ĥ. Besides, the NPMLE of distribution function of T*(θ 0), \({\hat F}\) , will be derived through an inverse-probability-weighted (IPW) approach. Based on Theorem 3.1 of Van der Laan (1996), we prove the consistency and asymptotic normality of the NPMLE \({\hat F}\) under certain condition. For testing the null hypothesis \({H_{\theta_0}: T^{\ast}(\theta_0) = T^{\ast}-\theta_0\cdot \log(1 + Z^{\ast})}\) is independent of Z*, (Efron and Petrosian in J Am Stat Assoc 94:824–834, 1999). proposed a truncated version of the Kendall’s tau statistic. However, when T* is exponential distributed, the testing procedure is futile. To circumvent this difficulty, a modified testing procedure is proposed. Simulations show that the proposed test works adequately for moderate sample size.

This is a preview of subscription content, log in to check access.

References

  1. Efron B., Petrosian V. (1999) Noparametric methods for doubly truncated data. Journal of the American Statistical Association 94: 824–834

    MATH  Article  MathSciNet  Google Scholar 

  2. Kaplan E.L., Meier P. (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53: 457–481

    MATH  Article  MathSciNet  Google Scholar 

  3. Kendall M.G. (1938) A new measure of rank correlation. Biometrika 30: 81–93

    MATH  MathSciNet  Google Scholar 

  4. Lynden-Bell D. (1971) A method of allowing for known observational selection in small samples applied to 3CR quasars. Monograph National Royal Astronomical Society 155: 95–118

    Google Scholar 

  5. Neuhaus G. (1971) On weak convergence of stochastic process with multidimensional time parameter. The Annals of Mathematical Statistics 42: 1285–1295

    MATH  Article  MathSciNet  Google Scholar 

  6. Qin J., Wang M.-C. (2001) Semiparametric analysis of truncated data. Lifetime Data Analysis 7(3): 225–242

    MATH  Article  MathSciNet  Google Scholar 

  7. Robins, J. M. (1993). Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers. In Proceedings of the American statistical association- biopharmaceutical section, pp. 24–33. Alexaandria: ASA.

  8. Robins J.M., Finkelstein D. (2000) Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted(IPCW) log-rank tests. Biometrice 56: 779–788

    MATH  Article  Google Scholar 

  9. Satten G.A., Datta S. (2001) The Kaplan–Meier estimator as an inverse-probability-of-censoring weighted average. The American Statistician 55: 207–210

    MATH  Article  MathSciNet  Google Scholar 

  10. Shen P.-S. (2003) The product-limit estimate as an inverse-probability-weighted average. Communications in Statistics, Theory and Methods 32: 1119–1133

    MATH  Article  MathSciNet  Google Scholar 

  11. Tsai W.Y. (1990) Testing the assumption of independence of truncation time and failure time. Biometrika 77: 169–177

    MATH  Article  MathSciNet  Google Scholar 

  12. Turnbull B.W. (1976) The empirical distribution with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B 38: 290–295

    MATH  MathSciNet  Google Scholar 

  13. Vander Laan M.J. (1996) Nonparametric estimation of the bivariate survival function with truncated data. Journal of Multivariate Analysis 58: 107–131

    MATH  Article  MathSciNet  Google Scholar 

  14. Vander Vaart A.W. (1995) Efficiency of the infinite dimensional M-estimators. Statistica Neerlandica 49: 9–30

    MATH  Article  MathSciNet  Google Scholar 

  15. van der Vaart A.W., Wellner J.A. (1996) Weak convergence and empirical processes with application to statistics. Springer, New York

    Google Scholar 

  16. Wang M.-C. (1987) Product-limit estimates: a generalized maximum likelihood study. Communications in Statistics, Theory and Methods 6: 3117–3132

    Google Scholar 

  17. Wang M.-C. (1989) A semiparametric model for randomly truncated data. Journal of the American Statistical Assocation 84: 742–748

    MATH  Article  Google Scholar 

  18. Woodroofe M. (1985) Estimating a distribution function with truncated data. The Annals of Statistics 13: 163–177

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pao-sheng Shen.

About this article

Cite this article

Shen, P. Nonparametric analysis of doubly truncated data. Ann Inst Stat Math 62, 835–853 (2010). https://doi.org/10.1007/s10463-008-0192-2

Download citation

Keywords

  • Double truncation
  • Nonparametric MLE
  • Kendall’s tau