A preferential attachment model with Poisson growth for scale-free networks

  • Paul Sheridan
  • Yuichi Yagahara
  • Hidetoshi Shimodaira
Article

Abstract

We propose a scale-free network model with a tunable power-law exponent. The Poisson growth model, as we call it, is an offshoot of the celebrated model of Barabási and Albert where a network is generated iteratively from a small seed network; at each step a node is added together with a number of incident edges preferentially attached to nodes already in the network. A key feature of our model is that the number of edges added at each step is a random variable with Poisson distribution, and, unlike the Barabási–Albert model where this quantity is fixed, it can generate any network. Our model is motivated by an application in Bayesian inference implemented as Markov chain Monte Carlo to estimate a network; for this purpose, we also give a formula for the probability of a network under our model.

Keywords

Bayesian inference Complex networks Network models Power-law Scale-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert R., Jeong H. and Barabási A.-L. (1999). Diameter of the world-wide web. Nature 401: 130–131 CrossRefGoogle Scholar
  2. Albert R. and Barabási A.-L. (2000). Topology of evolving networks: local events and universality. Physical Review Letters 85: 5234–5237 CrossRefGoogle Scholar
  3. Barabási A.-L. and Albert R. (1999). Emergence of scaling in random networks. Science 286: 509–512 CrossRefMathSciNetGoogle Scholar
  4. Bauke H. (2007). Parameter estimation for power-law distributions by maximum likelihood methods. The European Physical Journal B Condensed Matter and Complex Systems 58(2): 167–173 CrossRefGoogle Scholar
  5. Bianconi G. and Barabási A.-L. (2001). Competition and multiscaling in evolving networks. Europhysics Letters 54(4): 436–442 CrossRefGoogle Scholar
  6. Boccaletti S., Latora V., Moreno Y., Chavez M. and Hwang D.-U. (2006). Complex networks: structure and dynamics. Physics Reports 4-5 424: 175–308 CrossRefMathSciNetGoogle Scholar
  7. Bollobás B., Riordan O., Spencer J. and Tusanády G. (2001). The degree sequence of a scale-free random graph process. Random Structures Algorithms 18: 279–290 MATHCrossRefMathSciNetGoogle Scholar
  8. Dorogovtsev S.N., Mendes J.F.F., Samukhin and A.N. (2000). Structure of growing networks with preferential linking. Physical Review Letters 85: 4633–4636 CrossRefGoogle Scholar
  9. Dorogovtsev S.N. and Mendes J.F.F. (2001). Effect of accelerated growth of communications networks on their structure. Physical Review E 63: 025101 CrossRefGoogle Scholar
  10. Erdös P. and Rényi A. (1959). On random graphs I. Publicationes Mathematicae, 6: 290–297 MATHGoogle Scholar
  11. Goldstein M.L., Morris S.A. and Yen G.G. (2004). Problems with fitting to the power-law distribution. The European Physics Journal B 41: 255–258 CrossRefGoogle Scholar
  12. Jeong H., Mason S., Barabási A.-L. and Oltvai Z.N. (2001). Lethality and centrality in protein networks. Nature 411: 41–42 CrossRefGoogle Scholar
  13. Krapivsky P.L., Redner S. and Leyvraz F. (2000). Connectivity of growing random networks. Physical Review Letters 85: 4629–4632 CrossRefGoogle Scholar
  14. Krapivsky P.L. and Redner S. (2001). Organization of growing random networks. Physical Review E 63: 066123 CrossRefGoogle Scholar
  15. Lee D.S., Goh K.I., Kahng B. and Kim D. (2005). Scale-free random graphs and Potts model. Pramana Journal of Physics 64: 1149–1159 CrossRefGoogle Scholar
  16. Newman M.E.J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46(5): 323–351 CrossRefGoogle Scholar
  17. Redner S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physics Journal B 4: 131–134 CrossRefGoogle Scholar
  18. Sheridan, P., Kamimura, T., Shimodaira, H. (2007). Scale-free networks in Bayesian inference with applications to bioinformatics. Proceedings of The International Workshop on Data-Mining and Statistical Science (DMSS2007), 1–16, Tokyo.Google Scholar
  19. Solé R.V., Pastor-Satorras R., Smith E. and Kepler T.B. (2002). A model of large-scale proteome evolution. Advances in Complex Systems 5: 43–54 MATHCrossRefGoogle Scholar
  20. Strogatz S.H. (2001). Exploring complex networks. Nature 410: 268–276 CrossRefGoogle Scholar
  21. Watts D.J. and Strogatz S.H. (1998). Collective dynamics of small-world networks. Nature 393: 440–442 CrossRefGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics, Tokyo 2008

Authors and Affiliations

  • Paul Sheridan
    • 1
  • Yuichi Yagahara
    • 1
  • Hidetoshi Shimodaira
    • 1
  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations