Advertisement

A journey of Indian languages over sentiment analysis: a systematic review

  • Sujata Rani
  • Parteek Kumar
Article
  • 76 Downloads

Abstract

In recent years, due to the availability of voluminous data on web for Indian languages, it has become an important task to analyze this data to retrieve useful information. Because of the growth of Indian language content, it is beneficial to utilize this explosion of data for the purpose of sentiment analysis. This research depicts a systematic review in the field of sentiment analysis in general and Indian languages specifically. The current status of Indian languages in sentiment analysis is classified according to the Indian language families. The periodical evolution of Indian languages in the field of sentiment analysis, sources of selected publications on the basis of their relevance are also described. Further, taxonomy of Indian languages in sentiment analysis based on techniques, domains, sentiment levels and classes has been presented. This research work will assist researchers in finding the available resources such as annotated datasets, pre-processing linguistic and lexical resources in Indian languages for sentiment analysis and will also support in selecting the most suitable sentiment analysis technique in a specific domain along with relevant future research directions. In case of resource-poor Indian languages with morphological variations, one encounters problems of performing sentiment analysis due to unavailability of annotated resources, linguistic and lexical tools. Therefore, to provide efficient performance using existing sentiment analysis techniques, the aforementioned issues should be addressed effectively.

Keywords

Sentiment analysis Opinion mining Machine learning Lexicon based Indian languages Aspect-based Sentence-level Systematic review 

Notes

Acknowledgements

This Publication is an outcome of the R&D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia).

References

  1. (2012) Shallow parsers, Language Technologies Research Centre (LTRC), IIIT Hyderabad. http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php. Accessed 25 June 2017
  2. (2014) Indo-Aryan languages. http://www.indianetzone.com/11/indo_aryan_languages.htm. Accessed 22 June 2017
  3. (2015) Indian language families. http://www.indianetzone.com/39/indian_language_families.htm. Accessed 20 June 2017
  4. (2017) Online education in India: 2021. https://assets.kpmg.com/content/dam/kpmg/in/pdf/2017/05/Online-Education-in-India-2021.pdf. Accessed 15 June 2017
  5. Akhtar MS, Ekbal A, Bhattacharyya P (2016a) Aspect based sentiment analysis: category detection and sentiment classification for Hindi. In: 17th International conference on intelligent text processing and computational linguistics, pp 1–12Google Scholar
  6. Akhtar MS, Ekbal A, Bhattacharyya P (2016b) Aspect based sentiment analysis in Hindi: resource creation and evaluation. In: Proceedings of the 10th international conference on language resources and evaluation, pp 1–7Google Scholar
  7. Akhtar MS, Kumar A, Ekbal A, Bhattacharyya P (2016c) A hybrid deep learning architecture for sentiment analysis. In: Proceedings of the 26th international conference on computational linguistics, pp 482–493Google Scholar
  8. Anagha M, Kumar RR, Sreetha K, Rajeev R, Raj PR (2014) Lexical resource based hybrid approach for cross domain sentiment analysis in Malayalam. Int J Eng Sci 15:18–21Google Scholar
  9. Anagha M, Kumar RR, Sreetha K, Raj PR (2015) Fuzzy logic based hybrid approach for sentiment analysisl of malayalam movie reviews. In: International conference on signal processing. Informatics, communication and energy systems. IEEE, pp 1–4Google Scholar
  10. Arora P (2013) Sentiment analysis for Hindi language. MS by Research in Computer ScienceGoogle Scholar
  11. Arora P, Kaur B (2015) Sentiment analysis of political reviews in Punjabi language. Int J Comput Appl 126(14):1–4Google Scholar
  12. Asghar MZ, Khan A, Zahra SR, Ahmad S, Kundi FM (2017) Aspect-based opinion mining framework using heuristic patterns. Clust Comput.  https://doi.org/10.1007/s10586-017-1096-9
  13. Asghar MZ, Khan A, Khan F, Kundi FM (2018a) Rift: a rule induction framework for twitter sentiment analysis. Arab J Sci Eng 43(2):857–877CrossRefGoogle Scholar
  14. Asghar MZ, Kundi FM, Ahmad S, Khan A, Khan F (2018b) T-saf: Twitter sentiment analysis framework using a hybrid classification scheme. Expert Syst 35(1):1–19CrossRefGoogle Scholar
  15. Baccianella S, Esuli A, Sebastiani F (2010) Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. Proc Lang Resour Eval 10:2200–2204Google Scholar
  16. Bakliwal A, Arora P, Varma V (2012) Hindi subjective lexicon: a lexical resource for Hindi polarity classification. In: Proceedings of the eight international conference on language resources and evaluation, pp 1189–1196Google Scholar
  17. Balamurali A, Joshi A, Bhattacharyya P (2012) Cross-lingual sentiment analysis for Indian languages using linked Wordnets. In: Proceedings of 24th international conference on computational linguistics: posters, pp 73–82Google Scholar
  18. Bansal N, Ahmed UZ, Mukherjee A (2013) Sentiment analysis in Hindi. Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India, pp 1–10Google Scholar
  19. Bhattacharyya P (2017) Indowordnet. In: The WordNet in Indian languages. Springer, pp 1–18Google Scholar
  20. Chand S (2016) Indian languages: classification of Indian languages. http://www.yourarticlelibrary.com/language/indian-languages-classification-of-indian-languages/19813/. Accessed 22 June 2017
  21. Chaudhari CV, Khaire AV, Murtadak RR, Sirsulla KS (2017) Sentiment analysis in Marathi using Marathi WordNet. Imp J Interdiscip Res 3(4):1253–1256Google Scholar
  22. Das A, Bandyopadhyay S (2010a) Phrase-level polarity identification for Bangla. Int J Comput Linguist Appl 1(1–2):169–182Google Scholar
  23. Das A, Bandyopadhyay S (2010b) Sentiwordnet for Bangla. Knowl Shar Event Task 2:1–9Google Scholar
  24. Das A, Bandyopadhyay S (2010c) Sentiwordnet for Indian languages. In: Asian federation for natural language processing, pp 56–63Google Scholar
  25. Deepamala N, Kumar R (2015) Polarity detection of Kannada documents. In: International advance computing conference. IEEE, pp 764–767Google Scholar
  26. Esuli A, Sebastiani F (2007) Sentiwordnet: a high-coverage lexical resource for opinion mining. In: International conference on language resources and evaluation, pp 1–26Google Scholar
  27. Fondekar A, Pawar JD, Karmali R (2016) Konkani sentiwordnet: resource for sentiment analysis using supervised learning approach. In: Workshop on Indian language data: resources and evaluation (WILDRE3), Portoroz, Slovenia, pp 55–59Google Scholar
  28. Ghosal T, Das SK, Bhattacharjee S (2015) Sentiment analysis on (Bengali horoscope) corpus. In: Annual India conference (INDICON). IEEE, pp 1–6Google Scholar
  29. Govindan R, Haroon RP (2016) A survey on sentiment and emotion classification in Indo-Dravidian languages. Imp J Interdiscip Res 3(1):1040–1042Google Scholar
  30. Gupta CP, Bal BK (2015) Detecting sentiment in Nepali texts: a bootstrap approach for sentiment analysis of texts in the Nepali language. In: International conference on cognitive computing and information processing. IEEE, pp 1–4Google Scholar
  31. Hasan KA, Rahman M et al (2014) Sentiment detection from Bangla text using contextual valency analysis. In: 17th International conference on computer and information technology. IEEE, pp 292–295Google Scholar
  32. Hassan A, Amin MR, Al Azad AK, Mohammed N (2016) Sentiment analysis on Bangla and Romanized Bangla text using deep recurrent models. In: International workshop on computational intelligence. IEEE, pp 51–56Google Scholar
  33. Hegde Y, Padma S (2015) Sentiment analysis for Kannada using mobile product reviews: a case study. In: International on advance computing conference. IEEE, pp 822–827Google Scholar
  34. Hegde Y, Padma S (2017) Sentiment analysis using random forest ensemble for mobile product reviews in Kannada. In: 7th international on advance computing conference. IEEE, pp 777–782Google Scholar
  35. Jayan P, Nair DS, Elizabeth Jisha S (2015) A subjective feature extraction for sentiment analysis in Malayalam language. Int J Eng Sci 14:1–4Google Scholar
  36. Jena MK, Chandra BR (2014) Opinion mining for online Oriya text. Eur J Acad Essays 44–48Google Scholar
  37. Jha V, Manjunath N, Shenoy PD, Venugopal K, Patnaik LM (2015) Homs: Hindi opinion mining system. In: 2nd International conference on recent trends in information systems. IEEE, pp 366–371Google Scholar
  38. Joshi A, Balamurali A, Bhattacharyya P (2010) A fall-back strategy for sentiment analysis in Hindi: a case study. In: Proceedings of the 8th international conference on natural language processing, pp 1–6Google Scholar
  39. Kaur A, Gupta V (2014a) N-gram based approach for opinion mining of Punjabi text. In: International workshop on multi-disciplinary trends in artificial intelligence. Springer, pp 81–88Google Scholar
  40. Kaur A, Gupta V (2014b) Proposed algorithm of sentiment analysis for Punjabi text. J Emerg Technol Web Intell 6(2):180–183Google Scholar
  41. Kaur J, Saini JR (2014) A study and analysis of opinion mining research in Indo-Aryan, Dravidian and Tibeto-Burman language families. Int J Data Min Emerg Technol 4(2):53–60CrossRefGoogle Scholar
  42. Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. EBSE technical report 2Google Scholar
  43. Kumar A, Kohail S, Ekbal A, Biemann C (2015a) Iit-tuda: system for sentiment analysis in Indian languages using lexical acquisition. In: International conference on mining intelligence and knowledge exploration. Springer, pp 684–693Google Scholar
  44. Kumar KA, Rajasimha N, Reddy M, Rajanarayana A, Nadgir K (2015b) Analysis of users sentiments from Kannada web documents. Procedia Comput Sci 54:247–256CrossRefGoogle Scholar
  45. Kumar SS, Premjith B, Kumar MA, Soman K (2015c) Amrita\_cen-nlp@ sail2015: sentiment analysis in Indian language using regularized least square approach with randomized feature learning. In: International conference on mining intelligence and knowledge exploration. Springer, pp 671–683Google Scholar
  46. Miranda DT, Mascarenhas M (2016) Kop: an opinion mining system in Konkani. In: International conference on recent trends in electronics. Information and communication technology. IEEE, pp 702–705Google Scholar
  47. Mittal N, Agarwal B, Chouhan G, Bania N, Pareek P (2013) Sentiment analysis of Hindi review based on negation and discourse relation. In: Proceedings of international joint conference on natural language processing, pp 45–50Google Scholar
  48. Mukhtar N, Khan MA (2017) Urdu sentiment analysis using supervised machine learning approach. Int J Pattern Recogn Artif Intell 32(02):1–15MathSciNetGoogle Scholar
  49. Mukhtar N, Khan MA, Chiragh N (2017) Effective use of evaluation measures for the validation of best classifier in Urdu sentiment analysis. Cogn Comput 9(4):446–456CrossRefGoogle Scholar
  50. Mukhtar N, Khan MA, Chiragh N (2018a) Lexicon based approach outperforms supervised machine learning approach for Urdu sentiment analysis in multiple domains. Telemat Inform 35(8):2173–2183CrossRefGoogle Scholar
  51. Mukhtar N, Khan MA, Chiragh N, Nazir S (2018b) Identification and handling of intensifiers for enhancing accuracy of Urdu sentiment analysis. Expert Syst 35(6):1–12CrossRefGoogle Scholar
  52. Mukku SS, Choudhary N, Mamidi R (2016) Enhanced sentiment classification of Telugu text using ml techniques. In: SAAIP@ 25th international joint conference on artificial intelligence, pp 29–34Google Scholar
  53. Naidu R, Bharti SK, Babu KS, Mohapatra RK (2017) Sentiment analysis using Telugu sentiwordnet. In: International conference on wireless communications signal processing and networking, pp 1–5Google Scholar
  54. Nair DS, Jayan JP, Sherly E et al (2014) Sentima-sentiment extraction for Malayalam. In: International conference on advances in computing, communications and informatics. IEEE, pp 1719–1723Google Scholar
  55. Nair DS, Jayan JP, Rajeev R, Sherly E (2015) Sentiment analysis of Malayalam film review using machine learning techniques. In: International conference on advances in computing, communications and informatics. IEEE, pp 2381–2384Google Scholar
  56. Nivedhitha E, Sanjay S, Anand Kumar M, Soman K (2016) Unsupervised word embedding based polarity detection for Tamil tweets. Int J Comput Technol Appl 9(10):4631–4638Google Scholar
  57. Nongmeikapam K, Khangembam D, Hemkumar W, Khuraijam S, Bandyopadhyay S (2014) Verb based manipuri sentiment analysis. Int J Nat Lang Comput 3(3):113–118CrossRefGoogle Scholar
  58. Pandey P, Govilkar S (2015) A framework for sentiment analysis in Hindi using HSWN. Int J Comput Appl 119(19):23–26Google Scholar
  59. Pang B, Lee L et al (2008) Opinion mining and sentiment analysis. Found Trends Inf RetR 2(1–2):1–135CrossRefGoogle Scholar
  60. Patra BG, Das D, Das A, Prasath R (2015) Shared task on sentiment analysis in Indian languages (sail) tweets-an overview. In: International conference on mining intelligence and knowledge exploration. Springer, pp 650–655Google Scholar
  61. Phani S, IIEST S, Lahiri S, Biswas A (2016) Sentiment analysis of tweets in three Indian languages. In: Proceedings of the 6th workshop on south and southeast Asian natural language processing, vol 1001, pp 93–102Google Scholar
  62. Prasad SS, Kumar J, Prabhakar DK, Pal S (2015) Sentiment classification: an approach for Indian language tweets using decision tree. In: International conference on mining intelligence and knowledge exploration. Springer, pp 656–663Google Scholar
  63. Rani S, Kumar P (2017) A sentiment analysis system to improve teaching and learning. Computer 50(5):36–43CrossRefGoogle Scholar
  64. Rani S, Kumar P (2018a) Deep learning based sentiment analysis using convolution neural network. Arab J Sci Eng.  https://doi.org/10.1007/s13369-018-3500-z
  65. Rani S, Kumar P (2018b) A sentiment analysis system for social media using machine learning techniques:social enablement. Digit Sch Hum.  https://doi.org/10.1093/llc/fqy037
  66. Rehman ZU, Bajwa IS (2016) Lexicon-based sentiment analysis for Urdu language. In: Sixth international conference on innovative computing technology. IEEE, pp 497–501Google Scholar
  67. Rohini V, Thomas M, Latha C (2016) Domain based sentiment analysis in regional language-Kannada using machine learning algorithm. In: International conference on recent trends in electronics, information and communication technology. IEEE, pp 503–507Google Scholar
  68. Sahu S, Behera P, Mohapatra D, Rakesh C (2016a) Information retrieval in web for an Indian language: an Odia language sentimental analysis context. Int J Comput Technol Appl 9(22):249–256Google Scholar
  69. Sahu SK, Behera P, Mohapatra D, Balabantaray RC (2016b) Sentiment analysis for Odia language using supervised classifier: an information retrieval in Indian language initiative. CSI Trans ICT 4(2–4):111–115CrossRefGoogle Scholar
  70. Sarkar K, Chakraborty S (2015) A sentiment analysis system for Indian language tweets. In: International conference on mining intelligence and knowledge exploration. Springer, pp 694–702Google Scholar
  71. Se S, Vinayakumar R, Kumar MA, Soman K (2015) Amrita-cen@ sail2015: Sentiment analysis in Indian languages. In: International conference on mining intelligence and knowledge exploration. Springer, pp 703–710Google Scholar
  72. Se S, Vinayakumar R, Kumar MA, Soman K (2016) Predicting the sentimental reviews in tamil movie using machine learning algorithms. Indian J Sci Technol 9(45):1–5CrossRefGoogle Scholar
  73. Seshadri S, Madasamy AK, Padannayil SK (2016) Analyzing sentiment in indian languages micro text using recurrent neural network. IIOAB 7:313–318Google Scholar
  74. Sharma P, Moh TS (2016) Prediction of Indian election using sentiment analysis on Hindi twitter. In: International conference on big data. IEEE, pp 1966–1971Google Scholar
  75. Sharma R, Bhattacharyya P (2014) A sentiment analyzer for Hindi using Hindi Senti Lexicon. In: 11th International conference on natural language processing, pp 1–6Google Scholar
  76. Sharma R, Nigam S, Jain R (2014) Polarity detection movie reviews in Hindi language, pp 1–9. arXiv preprint arXiv:1409.3942
  77. Sharma Y, Mangat V, Kaur M (2015) A practical approach to sentiment analysis of Hindi tweets. In: 1st International conference on next generation computing technologies. IEEE, pp 677–680Google Scholar
  78. Sharmista A, Ramaswami M (2016) Tree based opinion mining in Tamil for product recommendations using R. Int J Comput Intell Inf 6(2):108–116Google Scholar
  79. Syed AZ, Aslam M, Martinez-Enriquez AM (2010) Lexicon based sentiment analysis of Urdu text using SentiUnits. In: Mexican international conference on artificial intelligence. Springer, pp 32–43Google Scholar
  80. Syed AZ, Aslam M, Martinez-Enriquez AM (2011) Sentiment analysis of Urdu language: handling phrase-level negation. In: Mexican international conference on artificial intelligence. Springer, pp 382–393Google Scholar
  81. Syed AZ, Aslam M, Martinez-Enriquez AM (2014) Associating targets with sentiunits: a step forward in sentiment analysis of Urdu text. Artif Intell Rev 41(4):535–561CrossRefGoogle Scholar
  82. Thapa LBR, Bal BK (2016) Classifying sentiments in Nepali subjective texts. In: 7th International conference on information, intelligence, systems and applications. IEEE, pp 1–6Google Scholar
  83. Thulasi P, Usha K (2016) Aspect polarity recognition of movie and product reviews in Malayalam. In: International conference on next generation intelligent systems. IEEE, pp 1–5Google Scholar
  84. Venugopalan M, Gupta D (2015) Sentiment classification for Hindi tweets in a constrained environment augmented using tweet specific features. In: International conference on mining intelligence and knowledge exploration. Springer, pp 664–670Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CSEDThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations