From ants to whales: metaheuristics for all tastes

  • Fernando FaustoEmail author
  • Adolfo Reyna-Orta
  • Erik CuevasEmail author
  • Ángel G. Andrade
  • Marco Perez-Cisneros


Nature-inspired metaheuristics comprise a compelling family of optimization techniques. These algorithms are designed with the idea of emulating some kind natural phenomena (such as the theory of evolution, the collective behavior of groups of animals, the laws of physics or the behavior and lifestyle of human beings) and applying them to solve complex problems. Nature-inspired methods have taken the area of mathematical optimization by storm. Only in the last few years, literature related to the development of this kind of techniques and their applications has experienced an unprecedented increase, with hundreds of new papers being published every single year. In this paper, we analyze some of the most popular nature-inspired optimization methods currently reported on the literature, while also discussing their applications for solving real-world problems and their impact on the current literature. Furthermore, we open discussion on several research gaps and areas of opportunity that are yet to be explored within this promising area of science.


Nature-inspired metaheuristics Bio-inspired algorithms Optimization, review 



  1. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795CrossRefGoogle Scholar
  2. Abualigah LM, Khader AT, Al-Betar MA, Awadallah MA (2016) A krill herd algorithm for efficient text documents clustering. In: ISCAIE 2016—2016 IEEE symposium on computer applications & industrial electronics, pp 67–72Google Scholar
  3. Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH (2017a) A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Appl Soft Comput J. 60:423–435CrossRefGoogle Scholar
  4. Abualigah LM, Khader AT, Al-Betar MA, Alomari OA (2017b) Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst Appl 84:24–36CrossRefGoogle Scholar
  5. Al-Betar MA, Awadallah MA, Abu Doush I, Alsukhni E, ALkhraisat H (2018) A non-convex economic dispatch problem with valve loading effect using a new modified β-Hill Climbing Local Search Algorithm. Arab J Sci Eng 43:7439–7456CrossRefGoogle Scholar
  6. Alia OM, Al-Ajouri A (2017) maximizing wireless sensor network coverage with minimum cost using Harmony Search Algorithm. IEEE Sens J 17(3):882–896CrossRefGoogle Scholar
  7. Alomari OA, Khader AT (2017) MA Al Betar, and LM Abualigah (2017) Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int J Data Min Bioinform 19(1):32CrossRefGoogle Scholar
  8. Alshamlan H, Badr G, Alohali Y (2015) MRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed Res. Int. 2015:1–15CrossRefGoogle Scholar
  9. Alswaitti M, Albughdadi M, Isa NAM (2018) Density-based particle swarm optimization algorithm for data clustering. Expert Syst Appl 91:170–186CrossRefGoogle Scholar
  10. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: Crow Search Algorithm. Comput Struct 169:1–12CrossRefGoogle Scholar
  11. Askarzadeh A, Rezazadeh A (2012) Parameter identification for solar cell models using harmony search-based algorithms. Sol Energy 86(11):3241–3249CrossRefGoogle Scholar
  12. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation, CEC 2007, pp 4661–4667Google Scholar
  13. Auger A, Schoenauer M, Vanhaecke N (2004) {LS-CMA-ES}: a second-order algorithm for covariance matrix adaptation. Parallel Probl Solving Nat PPSN VIII 3242(1):182–191Google Scholar
  14. Avigad J, Donnelly K (2004) Formalizing O notation in Isabelle/HOL. Springer, Berlin, pp 357–371zbMATHGoogle Scholar
  15. Babu TS, Ram JP, Dragicevic T, Miyatake M, Blaabjerg F, Rajasekar N (2017) Particle Swarm Optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Trans Sustain Energy 9:74–85CrossRefGoogle Scholar
  16. Back T, Hoffmeister F, Schwefel HP (1991) A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms, vol 9, p 8Google Scholar
  17. Bäck T, Foussette C, Krause P (2013) Contemporary evolution strategies, vol 47. Springer, BerlinzbMATHCrossRefGoogle Scholar
  18. Basseur M, Lemesre J, Dhaenens C, Talbi EG (2004) Cooperation between branch and bound and evolutionary approaches to solve a bi-objective flow shop problem, vol 2632. Springer, BerlinGoogle Scholar
  19. Behnck LP, Doering D, Pereira CE, Rettberg A (2015) A modified simulated annealing algorithm for SUAVs path planning. IFAC-PapersOnLine 28(10):63–68CrossRefGoogle Scholar
  20. Bekdaş G, Nigdeli SM, Yang XS (2015) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput J 37:322–331CrossRefGoogle Scholar
  21. Benkhoud K, Bouallègue S (2017) Dynamics modeling and advanced metaheuristics based LQG controller design for a Quad Tilt Wing UAV. Int J Dyn Control 6(2):630–651MathSciNetCrossRefGoogle Scholar
  22. Beyer HG, Sendhoff B (2008) Covariance matrix adaptation revisited—the CMSA evolution strategy. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 5199, LNCS, pp 123–132Google Scholar
  23. Bhardwaj T, Sharma TK, Pandit MR (2014) Social engineering prevention by detecting malicious URLs using Artificial Bee Colony Algorithm. In: 3rd international conference on soft computing for problem solving, advances in intelligent systems, pp 355–363Google Scholar
  24. Binitha S, Sathya SS (2012) A survey of bio inspired optimization algorithms. Int J Soft Comput Eng 2(2):137–151Google Scholar
  25. Birbil ŞI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282MathSciNetzbMATHCrossRefGoogle Scholar
  26. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci (Ny) 237:82–117MathSciNetzbMATHCrossRefGoogle Scholar
  27. Burke EK et al (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724CrossRefGoogle Scholar
  28. Camarena O, Cuevas E, Pérez-cisneros M, Fausto F, González A, Valdivia A (2018) Ls-II: an improved locust search algorithm for solving constrained optimization problemsGoogle Scholar
  29. Cao S, Wang J, Gu X (2012) A wireless sensor network location algorithm based on Firefly Algorithm. Asia Simul Conf 2012:18–26Google Scholar
  30. Cavazzuti M (2013) Optimization methods: from theory to design. Springer, BerlinzbMATHCrossRefGoogle Scholar
  31. Chen C (2017) Image segmentation for lung lesions using ant colony optimization classifier in chest CT. In: Advances in intelligent information hiding and multimedia signal processing, pp 283–289Google Scholar
  32. Cheng S, Shi Y, Qin Q, Ting TO, Bai R (2014) Maintaining population diversity in brain storm optimization algorithm. In: Proceedings 2014 IEEE congress on evolutionary computation CEC 2014, pp 3230–3237Google Scholar
  33. Contreras-Cruz MA, Lopez-Perez JJ, Ayala-Ramirez V (2017) Distributed path planning for multi-robot teams based on artificial bee colony. In: Proceeding on IEEE congress on evolutionary computation CEC 2017 pp 541–548Google Scholar
  34. Črepiňsek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(33):1–33zbMATHCrossRefGoogle Scholar
  35. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-cisneros M (2013a) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384CrossRefGoogle Scholar
  36. Cuevas E, Echavarría A, Ramírez-Ortegón MA (2013b) An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation. Appl Intell 40(2):256–272CrossRefGoogle Scholar
  37. Cuevas E, González A, Fausto F, Zaldívar D, Pérez-Cisneros M (2015a) An optimisation algorithm based on the behaviour of locust swarms. Int. Bio Inspir Comput 7(6):402CrossRefGoogle Scholar
  38. Cuevas E, González A, Fausto F, Zaldívar D, Pérez-Cisneros M (2015b) Multithreshold segmentation by using an algorithm based on the behavior of locust swarms. Math Probl Eng 2015:26Google Scholar
  39. Cuevas E, Díaz Cortés MA, Oliva Navarro DA (2016) Advances of evolutionary computation: methods and operators, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  40. Cuevas E, Osuna V, Oliva D (2017a) Evolutionary computation techniques: a comparative perspective, vol 686. Springer, BerlinCrossRefGoogle Scholar
  41. Cuevas E, Gálvez J, Avalos O (2017b) Parameter estimation for chaotic fractional systems by using the locust search algorithm. Comput y Sist 21(2):369–380Google Scholar
  42. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31CrossRefGoogle Scholar
  43. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30CrossRefGoogle Scholar
  44. Deif DS, Member S, Gadallah Y, Member S (2017) “An Ant Colony Optimization approach for the deployment of reliable wireless sensor networks. IEEE Access 5:10744–10756CrossRefGoogle Scholar
  45. Díaz-Cortés M-A, Cuevas E, Rojas R (2017) Engineering applications of soft computing. Springer, BerlinCrossRefGoogle Scholar
  46. Din M, Pal SK, Muttoo SK, Jain A (2016) Applying Cuckoo Search for analysis of LFSR based cryptosystem. Perspect Sci 8:435–439CrossRefGoogle Scholar
  47. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243–278MathSciNetzbMATHCrossRefGoogle Scholar
  48. Dorigo M, Stützle T (2004) Ant colony optimization. Springer, BerlinzbMATHCrossRefGoogle Scholar
  49. Du H, Wang Z, Zhan WEI (2018) Elitism and distance strategy for selection of evolutionary algorithms. IEEE Access 6:44531–44541CrossRefGoogle Scholar
  50. El Aziz MA, Ewees AA, Hassanien AE (2017) Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256CrossRefGoogle Scholar
  51. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381CrossRefGoogle Scholar
  52. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166CrossRefGoogle Scholar
  53. Feng Y, Wang GG, Deb S, Lu M, Zhao XJ (2017) Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 28(7):1619–1634CrossRefGoogle Scholar
  54. Galinier P, Hamiez JP, Hao JK, Porumbel D (2013) Handbook of optimization, vol 38. Springer, BerlinCrossRefGoogle Scholar
  55. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetzbMATHCrossRefGoogle Scholar
  56. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRefGoogle Scholar
  57. Gerules G, Janikow C (2016) A survey of modularity in genetic programming. In: 2016 IEEE congress on evolutionary computation CEC 2016, pp 5034–5043Google Scholar
  58. Ghazali R, Deris MM, Nawi NM, Abawajy JH (2018) Recent advances on soft computing and data mining, vol 700. Springer, BerlinCrossRefGoogle Scholar
  59. Gomes AM, Oliveira JF (2006) Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming. Eur J Oper Res 171(3):811–829zbMATHCrossRefGoogle Scholar
  60. González A, Cuevas E, Fausto F, Valdivia A, Rojas R (2017) A template matching approach based on the behavior of swarms of locust. Appl Intell 47(4):1087–1098CrossRefGoogle Scholar
  61. Goudos SK (2017) Antenna design using binary differential evolution. In: IEEE antennas and propagation magazineGoogle Scholar
  62. Goyal S, Patterh MS (2015) Performance of BAT algorithm on localization of wireless sensor network. Wirel Pers Commun 6(3):351–358Google Scholar
  63. Guerrero M, Montoya FG, Baños R, Alcayde A, Gil C (2017) Adaptive community detection in complex networks using genetic algorithms. Neurocomputing 266:101–113CrossRefGoogle Scholar
  64. Guha D, Roy PK, Banerjee S (2016) Load frequency control of interconnected power system using grey Wolf Optimization. Swarm Evol Comput 27:97–115CrossRefGoogle Scholar
  65. Gutin G, Punnen AP (2007) The traveling salesman problem and its variations. Springer, USzbMATHCrossRefGoogle Scholar
  66. Han W, Wang H, Chen L (2014) Parameters identification for photovoltaic module based on an Improved Artificial Fish Swarm AlgorithmGoogle Scholar
  67. Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on modified gravitational search algorithm. Eng Appl Artif Intell 61:1–7CrossRefGoogle Scholar
  68. Harman M, Langdon WB, Weimer W (2013) Genetic programming for reverse engineering. In: 20th working conference on reverse engineering, WCRE 2013, pp 1–10Google Scholar
  69. He L, Huang S (2017) Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 240:152–174CrossRefGoogle Scholar
  70. Hinojosa S, Oliva D, Cuevas E, Pajares G, Avalos O, Gálvez J (2018) Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm. Neural Comput Appl 29(8):319–335CrossRefGoogle Scholar
  71. Horng M-H, Jiang T-W (2010) Multilevel image thresholding selection using the Artificial Bee Colony Algorithm. Artif Intell Comput Intell 6320:318–325CrossRefGoogle Scholar
  72. Huang T, Jia XD, Yuan HQ, Jiang JQ (2017) Niching community based differential evolution for multimodal optimization problems. In: IEEE, PiscatawayGoogle Scholar
  73. Ibrahim E, Birchell S, Elfayoumy S (2012) Automatic heart volume measurement from CMR images using ant colony optimization with iterative salient isolated thresholding. J Cardiovasc Magn Reson 14(1):1–2CrossRefGoogle Scholar
  74. Idris I et al (2015) A combined negative selection algorithm-Particle Swarm Optimization for an email spam detection system. Eng Appl Artif Intell 39:33–44CrossRefGoogle Scholar
  75. Jadhav AN, Gomathi N (2016) WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex Eng J 57:1569–1584CrossRefGoogle Scholar
  76. Johny DC, Assistant AJS (2017) Negative selection algorithm : a survey. Int J Sci Eng Technol Res 6(4):711–715Google Scholar
  77. Jourdan L, Basseur M, Talbi EG (2009) Hybridizing exact methods and metaheuristics: a taxonomy. Eur J Oper Res 199(3):620–629MathSciNetzbMATHCrossRefGoogle Scholar
  78. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471MathSciNetzbMATHCrossRefGoogle Scholar
  79. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput J 8(1):687–697CrossRefGoogle Scholar
  80. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294CrossRefGoogle Scholar
  81. Kennedy J, Eberhart R (1995) Particle Swarm Optimization. IEEE Int Conf Neural Netw 4:1942–1948Google Scholar
  82. Keshtegar B, Hao P, Wang Y, Li Y (2017) Optimum design of aircraft panels based on adaptive dynamic harmony search. Thin-Walled Struct 118(May):37–45CrossRefGoogle Scholar
  83. Khairuzzaman AKM, Chadhury S (2017) Moth-Flame Optimization Algorithm based multilevel thresholding for image segmentation. Int J Appl Metaheuristic Comput 8(4):58–83CrossRefGoogle Scholar
  84. Khairuzzaman AKM, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl 86:64–76CrossRefGoogle Scholar
  85. Khatibinia M, Yazdani H (2017) Accelerated multi-gravitational search algorithm for size optimization of truss structures. Swarm Evol Comput 1:1. Google Scholar
  86. Khu ST, Liong SY, Babovic V, Madsen H, Muttil N (2001) Genetic programming and its application in real-time runoff forecasting. J Am Water Resour Assoc 37(2):439–451CrossRefGoogle Scholar
  87. Kiranyaz S, Uhlmann S, Ince T, Gabbouj M (2015) Perceptual dominant color extraction by multidimensional Particle Swarm Optimization. EURASIP J Adv Signal Process 2009:451638zbMATHCrossRefGoogle Scholar
  88. Kirkpatrick S, Gelatt CD, Vecch MP (2007) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetzbMATHCrossRefGoogle Scholar
  89. Kora P, Kalva SR (2015) Improved Bat algorithm for the detection of myocardial infarction. Springerplus 4(1):666CrossRefGoogle Scholar
  90. Laguna M, Martí R (2003) Scatter Search, Methodology and Implementations in C. Springer, New YorkzbMATHCrossRefGoogle Scholar
  91. Li P, Duan H (2012) Path planning of unmanned aerial vehicle based on improved gravitational search algorithm. Sci China Technol Sci 55(10):2712–2719CrossRefGoogle Scholar
  92. Lin M, Tsai J, Yu C (2012) A review of deterministic optimization methods in engineering and management. Math Probl Eng 2012:1–15MathSciNetzbMATHGoogle Scholar
  93. Liu B, Koziel S, Zhang Q (2016) A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems. J Comput Sci 12:28–37MathSciNetCrossRefGoogle Scholar
  94. Ma J, Ting TO, Man KL, Zhang N, Guan SU, Wong PWH (2013) Parameter estimation of photovoltaic models via cuckoo search. J Appl Math 2013:10–12MathSciNetGoogle Scholar
  95. Mafarja MM, Mirjalili S (2016) Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312CrossRefGoogle Scholar
  96. Mann PS, Singh S (2017) Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks. Eng Appl Artif Intell 57(2016):142–152CrossRefGoogle Scholar
  97. Marinaki M, Marinakis Y (2016) A Glowworm Swarm Optimization algorithm for the vehicle routing problem with stochastic demands. Expert Syst Appl 46(4):145–163CrossRefGoogle Scholar
  98. Massan SUR, Wagan AI, Shaikh MM, Abro R (2015) Wind turbine micrositing by using the firefly algorithm. Appl Soft Comput J 27:450–456CrossRefGoogle Scholar
  99. McCall J (2005) Genetic algorithms for modelling and optimisation. J Comput Appl Math 184(1):205–222MathSciNetzbMATHCrossRefGoogle Scholar
  100. Mesbahi T, Rizoug N, Bartholomeus P, Sadoun R, Khenfri F, Lemoigne P (2017) Optimal energy management for a Li-ion battery/supercapacitor hybrid energy storage system based on Particle Swarm Optimization incorporating Nelder-Mead simplex approach. IEEE Trans Intell Veh 2(2):1CrossRefGoogle Scholar
  101. Mesejo P, Ibáñez Ó, Cordón Ó, Cagnoni S (2016) A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl Soft Comput J 44:1–29CrossRefGoogle Scholar
  102. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249CrossRefGoogle Scholar
  103. Mirjalili S (2016) SCA : a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRefGoogle Scholar
  104. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRefGoogle Scholar
  105. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  106. Mitchell M (1995) Genetic algorithms: an overview. Complexity 1(1):31–39zbMATHCrossRefGoogle Scholar
  107. Mitchell M (1996) An introduction to genetic algorithms. The MIT Press, CambridgezbMATHGoogle Scholar
  108. Moayedikia A, Ong K-L, Boo YL, Yeoh WG, Jensen R (2017) Feature selection for high dimensional imbalanced class data using harmony search. Eng Appl Artif Intell 57(2016):38–49CrossRefGoogle Scholar
  109. Mohamed AW, Sabry HZ, Khorshid M (2012) An alternative differential evolution algorithm for global optimization. J Adv Res 3(2):149–165CrossRefGoogle Scholar
  110. Mohammad L, Abualigah Q, Hanandeh ES (2015) Applying Genetic Algorithms to information retrieval using vector space model. Int J Comput Sci Eng Appl 5(1):19–28Google Scholar
  111. Nagpal S, Arora S, Dey S, Shreya (2017) Feature selection using Gravitational Search Algorithm for biomedical data. Procedia Comput Sci 115:258–265CrossRefGoogle Scholar
  112. Neumann F, Witt C (2010) Bioinspired computation in combinatorial optimization—algorithms and their computational complexity. Springer, BerlinzbMATHGoogle Scholar
  113. Olague G, Trujillo L (2012) Interest point detection through multiobjective genetic programming. Appl Soft Comput J 12(8):2566–2582CrossRefGoogle Scholar
  114. Oliva D, Cuevas E, Pajares G (2014) Parameter identification of solar cells using artificial bee colony optimization. Energy 72:93–102CrossRefGoogle Scholar
  115. Oliva D, Hinojosa S, Cuevas E, Pajares G, Avalos O, Gálvez J (2017) Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst Appl 79:164–180CrossRefGoogle Scholar
  116. Opara KR, Arabas J (2018) Differential evolution: a survey of theoretical analyses. Swarm Evol Comput. Google Scholar
  117. Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63(5):511–623zbMATHCrossRefGoogle Scholar
  118. Ouaddah A, Boughaci D (2016) Harmony search algorithm for image reconstruction from projections. App Soft Comput J 46:924–935CrossRefGoogle Scholar
  119. Ouadfel S, Taleb-Ahmed A (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst Appl 55:566–584CrossRefGoogle Scholar
  120. Oz I, Topcuoglu HR, Ermis M (2013) A meta-heuristic based three-dimensional path planning environment for unmanned aerial vehicles. Simulation 89(8):903–920CrossRefGoogle Scholar
  121. Padhye N, Mittal P, Deb K (2013) Differential evolution: performances and analyses. In: 2013 IEEE congress on evolutionary computation (CEC), pp 1960–1967Google Scholar
  122. Pardalos PM, Du D-Z, Graham RL (2013) Handbook of combinatorial optimization. Springer, USzbMATHCrossRefGoogle Scholar
  123. Pereira FB, Tavares J (2009) Bio-inspired algorithms for the vehicle routing problem. Springer, USCrossRefGoogle Scholar
  124. Pereira DR et al (2016) Social-Spider Optimization-based support vector machines applied for energy theft detection. Comput Electr Eng 49:25–38CrossRefGoogle Scholar
  125. Pham DT, Huynh TTB, Bui TL (2013) A survey on hybridizing genetic algorithm with dynamic programming for solving the traveling salesman problem. In: 2013 international conference soft computer pattern recognition, SoCPaR 2013, pp 66–71Google Scholar
  126. Piotrowski AP (2017) Review of differential evolution population size. Swarm Evol Comput 32:1–24CrossRefGoogle Scholar
  127. Piotrowski AP, Napiorkowski JJ (2016) Searching for structural bias in Particle Swarm Optimization and differential evolution algorithms. Swarm Intell 10(4):307–353CrossRefGoogle Scholar
  128. Piotrowski AP, Napiorkowski JJ (2018) Some metaheuristics should be simplified. Inf Sci (NY) 427:32–62MathSciNetCrossRefGoogle Scholar
  129. Plateau A, Tachat D, Tolla P (2002) A hybrid search combining interior point methods and metaheuristics for 0–1 programming. Int Trans Oper Res 9(6):731–746MathSciNetzbMATHCrossRefGoogle Scholar
  130. Poli R, Kennedy J, Blackwell T (2007a) Particle Swarm Optimization. Swarm Intell 1(1):33–57CrossRefGoogle Scholar
  131. Poli R, Langdon WB, McPhee NF, Koza JR (2007b) Genetic programming an introductory tutorial and a survey of techniques and applications. Technical report CES475, vol 18, Oct 2007, pp 1–112Google Scholar
  132. Portmann MC, Vignier A, Dardilhac D, Dezalay D (1998) Branch and bound crossed with GA to solve hybrid flowshops. Eur J Oper Res 107(2):389–400zbMATHCrossRefGoogle Scholar
  133. Potvin JY (2009) A review of bio-inspired algorithms for vehicle routing. Stud Comput Intell 161(July):1–34Google Scholar
  134. Prakash DB, Lakshminarayana C (2016) Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm. Alex Eng J 56:499–509CrossRefGoogle Scholar
  135. Prasad D, Mukherjee A, Mukherjee V (2017) Application of chaotic krill herd algorithm for optimal power flow with direct current link placement problem. Chaos Solitons Fractals 103:90–100MathSciNetCrossRefGoogle Scholar
  136. Puchinger J, Raidl GR (2005) Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification. In: Mira J, Álvarez JR (eds) Artificial intelligence and knowledge engineering applications: a bioinspired approach. IWINAC 2005. Lecture notes in computer science, vol 3562. Springer, Berlin.Google Scholar
  137. Rahimi S, Abdollahpouri A, Moradi P (2018) A multi-objective Particle Swarm Optimization algorithm for community detection in complex networks. Swarm Evol Comput 39:297–309CrossRefGoogle Scholar
  138. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (NY) 179(13):2232–2248zbMATHCrossRefGoogle Scholar
  139. Regis RG (2013) Particle swarm with radial basis function surrogates for expensive black-box optimization. J Comput Sci 5(1):1–12MathSciNetGoogle Scholar
  140. Rere LMR, Fanany MI, Arymurthy AM (2015) Simulated annealing algorithm for deep learning. Procedia Comput Sci 72:137–144CrossRefGoogle Scholar
  141. Reyna A, Fausto F (2017) AISearch. Nature-inspired Metaheuristic Optimization Algorithms. Accessed 01 Jan 2017
  142. Rutenbar RA (1989) Simulated annealing algorithms: an overview. IEEE Circuits Dev Mag 5(1):19–26CrossRefGoogle Scholar
  143. Sahlol AT, Ewees AA, Hemdan AM, Hassanien AE (2009) Training of feedforward neural networks using sine-cosine algorithm to improve the prediction of liver enzymes on FIsh farmed on nano-selenite. In: 2016 12th international conference computer engineering conference (ICENCO), pp 35–40Google Scholar
  144. Sahoo A, Chandra S (2017) Multi-objective Grey Wolf Optimizer for improved cervix lesion classification. Appl Soft Comput J 52:64–80CrossRefGoogle Scholar
  145. Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput Appl 27(7):1853–1866CrossRefGoogle Scholar
  146. Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning, pp 1–13. arXiv:1703.03864v2
  147. Sapra D, Sharma R, Agarwal AP (2017) Comparative study of metaheuristic algorithms using Knapsack Problem. In: 7th International conference on cloud computing, data science & engineering, pp 134–137Google Scholar
  148. Sarjila R, Ravi K, Edward JB, Kumar KS, Prasad A (2016) Parameter extraction of solar photovoltaic modules using Gravitational Search AlgorithmGoogle Scholar
  149. Sayed GI, Hassanien AE, Nassef TM (2017) Genetic and evolutionary computing, vol 536. Springer, BerlinGoogle Scholar
  150. Schneider JJ, Kirkpatrick S (2006) Stochastic optimization. Springer, BerlinzbMATHGoogle Scholar
  151. Sette S, Boullart L (2001) Genetic programming: principles and applications. Eng Appl Artif Intell 14(6):727–736CrossRefGoogle Scholar
  152. Shukla UP, Nanda SJ (2016) Parallel social spider clustering algorithm for high dimensional datasets. Eng Appl Artif Intell 56:75–90CrossRefGoogle Scholar
  153. Shukla R, Singh D (2016) Selection of parameters for advanced machining processes using firefly algorithm. Eng Sci Technol Int J 20(1):1–10Google Scholar
  154. Siddique N, Adeli H (2016) Simulated annealing, its variants and engineering applications. Int J Artif Intell Tools 25(06):1630001CrossRefGoogle Scholar
  155. Silva P, Santos CP, Matos V, Costa L (2014) Automatic generation of biped locomotion controllers using genetic programming. Rob Auton Syst 62(10):1531–1548CrossRefGoogle Scholar
  156. Sipper M, Fu W, Ahuja K, Moore JH (2018) “Investigating the parameter space of evolutionary algorithms. BioData Min 11(1):2CrossRefGoogle Scholar
  157. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetzbMATHCrossRefGoogle Scholar
  158. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: ICSI 2010—proceedings first international conference, part I, 2010, June, pp 355–364Google Scholar
  159. Tolabi HB, Ayob SM (2014) New technique for global solar radiation forecasting by simulated annealing and genetic algorithms using. Appl Sol Energy 50(3):202–206CrossRefGoogle Scholar
  160. Tsai P, Nguyen T, Dao T (2016) Genetic and evolutionary robot path planning optimization based on multiobjective grey wolf optimizer. In: Genetic and evolutionary computing proceedings of the tenth international conference on genetic and evolutionary computing, pp 166–173Google Scholar
  161. Valdivia-Gonzalez A, Zaldívar D, Fausto F, Camarena O, Cuevas E, Perez-Cisneros M (2017a) A states of matter search-based approach for solving the problem of intelligent power allocation in plug-in hybrid electric vehicles. Energies 10(1):92CrossRefGoogle Scholar
  162. Valdivia-Gonzalez A, Zaldívar D, Fausto F, Camarena O, Cuevas E, Perez-Cisneros M (2017b) A states of matter search-based approach for solving the problem of intelligent power allocation in plug-in hybrid electric vehicles. Energies 10(1):92CrossRefGoogle Scholar
  163. Van Sickel JH, Lee KY, Heo JS (2007) Differential evolution and its applications to power plant control. In: 14th international conference on intelligent systems applications to power systems, no 2, pp 560–565Google Scholar
  164. Vanneschi L, Castelli M, Silva S (2014) A survey of semantic methods in genetic programming. Genet Program Evolv Mach 15(2):195–214CrossRefGoogle Scholar
  165. Vocking B et al (2011) Algorithms unplugged. Springer, Berlin HeidelbergzbMATHCrossRefGoogle Scholar
  166. Wang KJ, Adrian AM, Chen KH, Wang KM (2015) An improved electromagnetism-like mechanism algorithm and its application to the prediction of diabetes mellitus. J Biomed Inform 54:220–229CrossRefGoogle Scholar
  167. Wild SM, Regis RG, Shoemaker CA (2008) ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J Sci Comput 30(6):3197–3219MathSciNetzbMATHCrossRefGoogle Scholar
  168. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRefGoogle Scholar
  169. Wu J, Qiu T, Wang L, Huang H (2011) An approach to feature selection based on Ant Colony Optimization and Rough Set, pp. 466–471Google Scholar
  170. Xiang T (2016) Vehicle routing problem based on particle Swarm Optimization Algorithm with gauss mutation. Am J Softw Eng Appl 5(1):1Google Scholar
  171. Xie C, Zheng H (2016) Application of improved cuckoo search algorithm to path planning unmanned aerial vehicles. In: 12th international conference intelligent computing theories and application, ICIC 2016, pp 722–729Google Scholar
  172. Xu H, Pu P, Duan F (2018) Dynamic vehicle routing problems with enhanced ant colony optimization. Discret Dyn Nat Soc 2018:1–13Google Scholar
  173. Wei L, Zhang Z, Zhang D, Leung SCH (2017) A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res. zbMATHGoogle Scholar
  174. Yadav PK, Prajapati NL (2012) An overview of genetic algorithm and modeling. Int J Sci Res Publ 2(9):1–4Google Scholar
  175. Yan L, Yujuan Q, Zujian W, Wang L, Yan J (2015) A hybrid method combining genetic algorithm and Hooke–Jeeves method for 4PLRP. In: 2014 IEEE/CIC international conference on communication China—Work. CIC/ICCC 2014, vol 10, no. 4, pp 36–40Google Scholar
  176. Yang X (2008) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, BeckingtonGoogle Scholar
  177. Yang X (2010a) Firefly algorithm, Lévy flights and global optimization. Springer, BerlinCrossRefGoogle Scholar
  178. Yang X-S (2010b) A new metaheuristic bat-inspired algorithm. Stud Comput Intell 284:65–74zbMATHGoogle Scholar
  179. Yang XS (2011) Metaheuristic optimization: algorithm analysis and open problems. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence lecture notes in bioinformatics), vol 6630 LNCS, pp 21–32Google Scholar
  180. Yang XS (2012) Flower pollination algorithm for global optimization. In: Lecture notes in computer science, vol 7445, LNCS, pp 240–249Google Scholar
  181. Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):1–14CrossRefGoogle Scholar
  182. Yang XS (2015) Nature-inspired algorithms: success and challenges. Comput Methods Appl Sci 38:129–143CrossRefGoogle Scholar
  183. Yang X-S (2018) Swarm-based metaheuristic algorithms and no-free-lunch theorems. Intech Open 2:64Google Scholar
  184. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings 2009 world congress on nature and biologically inspired computing, NABIC 2009, pp 210–214Google Scholar
  185. Yang XS, Deb S, Hanne T, He X (2015) Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput Appl 19:1–8Google Scholar
  186. You I, Yim K, Barolli L (2017) A Social Spider Optimization based home energy management system. In: Advances in network-based information systems, 20th international conference on network-based information systems, pp 771–778Google Scholar
  187. Yurtkuran A, Emel E (2010) A new hybrid electromagnetism-like algorithm for capacitated vehicle routing problems. Expert Syst Appl 37(4):3427–3433CrossRefGoogle Scholar
  188. Zelinka I (2015) A survey on evolutionary algorithms dynamics and its complexity—mutual relations, past, present and future. Swarm Evol Comput 25:2–14CrossRefGoogle Scholar
  189. Zhang SZ, Lee CKM (2016) An improved artificial bee colony algorithm for the capacitated vehicle routing problem. In: Proceedings—2015 IEEE international conference on systems, man, and cybernetics SMC 2015, pp 2124–2128Google Scholar
  190. Zhang S, Zhou Y (2017) Template matching using grey wolf optimizer with lateral inhibition. Opt-Int J Light Electron Opt 130:1229–1243CrossRefGoogle Scholar
  191. Zhou Y, Zhao R, Luo Q, Wen C (2017a) “Sensor deployment scheme based on Social Spider Optimization Algorithm for wireless sensor networks. Neural Process Lett 48:71–94CrossRefGoogle Scholar
  192. Zhou Y, Wang R, Zhao C, Luo Q, Metwally MA (2017b) Discrete greedy flower pollination algorithm for spherical traveling salesman problem. Neural Comput Appl. Google Scholar
  193. Zou Y, Chakrabarty K (2003) Sensor deployment and target localization based on virtual forces. In: Twenty-second annual joint conference of the IEEE computer and communications, vol 2, no. C, pp 1293–1303Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de ElectrónicaUniversidad de Guadalajara, CUCEIGuadalajaraMexico
  2. 2.Facultad de IngenieríasUniversidad Autónoma de Baja CaliforniaMexicaliMexico

Personalised recommendations