Artificial Intelligence Review

, Volume 51, Issue 1, pp 119–148 | Cite as

A comprehensive review of krill herd algorithm: variants, hybrids and applications

  • Gai-Ge WangEmail author
  • Amir H. Gandomi
  • Amir H. Alavi
  • Dunwei Gong


Krill herd (KH) is a novel swarm-based metaheuristic optimization algorithm inspired by the krill herding behavior. The objective function in the KH optimization process is based on the least distance between the food location and position of a krill. The KH method has been proven to outperform several state-of-the-art metaheuristic algorithms on many benchmarks and engineering cases. This paper presents a comprehensive review of different versions of the KH algorithm and their engineering applications. The study is divided into the following general parts: KH variants, engineering optimization/application, and theoretical analysis. In addition, specific features of KH and future directions are discussed.


Krill herd Engineering optimization Swarm intelligence Metaheuristic Nature-inspired algorithm 



This work was supported by the National Natural Science Foundation of China (No. 61503165) and Natural Science Foundation of Jiangsu Province (No. BK20150239).


  1. Adewumi AO, Arasomwan MA (2016) On the performance of particle swarm optimisation with(out) some control parameters for global optimisation. Int J Bio Inspired Comput 8(1):14–32. doi: 10.1504/IJBIC.2016.074632 Google Scholar
  2. Adhvaryyu PK, Chattopadhyay PK, Bhattacharjya A (2014) Application of bio-inspired krill herd algorithm to combined heat and power economic dispatch. In: 2014 IEEE innovative smart grid technologies-Asia (ISGT Asia), Kuala Lumpur, Malaysia, 20–23 May, 2014. IEEE, pp 338–343. doi: 10.1109/ISGT-Asia.2014.6873814
  3. Ashouri M, Hosseini SM (2014) Application of krill herd and water cycle algorithms on dynamic economic load dispatch problem. Int J Inf Eng Electron Bus 4(4):12–19. doi: 10.5815/ijieeb.2014.04.02 Google Scholar
  4. Ayala H, Vasconcelos Segundo E, Coelho L, Mariani V (2016) Multiobjective krill herd algorithm for electromagnetic optimization. IEEE Trans Magn 52(3):1–4. doi: 10.1109/tmag.2015.2483060 Google Scholar
  5. Bacanin N, Pelevic B, Tuba M (2014) Krill herd (KH) algorithm for portfolio optimization. In: Mathematics and computers in business, manufacturing and tourism, pp 39–44Google Scholar
  6. Beyer H (2001) The theory of evolution strategies. Springer, New YorkzbMATHGoogle Scholar
  7. Bidar M, Fattahi E, Kanan HR (2014) Modified krill herd optimization algorithm using chaotic parameters. In: 2014 4th international conference on computer and knowledge engineering (ICCKE 2014), Mashhad, Iran, 29–30 Oct. 2014. IEEE, pp 420–424. doi: 10.1109/ICCKE.2014.6993468
  8. Bulatović RR, Miodragović G, Bošković MS (2016) Modified krill herd (MKH) algorithm and its application in dimensional synthesis of a four-bar linkage. Mech Mach Theory 95:1–21. doi: 10.1016/j.mechmachtheory.2015.08.004 Google Scholar
  9. Cai X, X-z Gao, Xue Y (2016) Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int J Bio Inspired Comput 8(4):205–214. doi: 10.1504/IJBIC.2016.078666 Google Scholar
  10. Davodi A, Isapour K, Zare A, Rostami M-A (2015) A modified KH algorithm to solve the optimal reconfiguration problem in the presence of distributed generations. J Intell Fuzzy Syst 28(1):383–391. doi: 10.3233/IFS-141314 MathSciNetGoogle Scholar
  11. Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, CambridgezbMATHGoogle Scholar
  12. Duan H, Luo Q (2015) New progresses in swarm intelligence-based computation. Int J Bio Inspired Comput 7(1):26–35. doi: 10.1504/IJBIC.2015.067981 Google Scholar
  13. Duan H, Zhao W, Wang G, Feng X (2012) Test-sheet composition using analytic hierarchy process and hybrid metaheuristic algorithm TS/BBO. Math Probl Eng 2012:1–22. doi: 10.1155/2012/712752 Google Scholar
  14. Dutta S, Mukhopadhyay P, Roy PK, Nandi D (2016) Unified power flow controller based reactive power dispatch using oppositional krill herd algorithm. Int J Electr Power 80:10–25. doi: 10.1016/j.ijepes.2016.01.032 Google Scholar
  15. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. doi: 10.1016/j.compstruc.2012.07.010 Google Scholar
  16. Fattahi E, Bidar M, Kanan HR (2014) Fuzzy krill herd optimization algorithm. In: 2014 first international conference on networks & soft computing (ICNSC 2014), Guntur, Andhra Pradesh, India, 19–20 Aug. 2014. IEEE, pp 423–426. doi: 10.1109/CNSC.2014.6906639
  17. Faris H, Aljarah I, Alqatawna JF (2015) Optimizing feedforward neural networks using krill herd algorithm for E-mail spam detection. In: 2015 IEEE jordan conference on applied electrical engineering and computing technologies (AEECT 2015), 3–5 Nov. 2015. pp 1–5. doi: 10.1109/AEECT.2015.7360576
  18. Fattahi E, Bidar M, Kanan HR (2016) Fuzzy krill herd (FKH): an improved optimization algorithm. Intell Data Anal 20(1):153–165. doi: 10.3233/IDA-150798 Google Scholar
  19. Feng Y, Wang G-G, Deb S, Lu M, Zhao X (2015) Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl. doi: 10.1007/s00521-015-2135-1 Google Scholar
  20. Feng Y, Wang G-G, Li W, Li N (2017) Multi-strategy monarch butterfly optimization algorithm for discounted 0–1 knapsack problem. Neural Comput Appl. doi: 10.1007/s00521-017-2903-1 Google Scholar
  21. Gálvez A, Iglesias A (2016) New memetic self-adaptive firefly algorithm for continuous optimisation. Int J Bio Inspired Comput 8(5):300–317. doi: 10.1504/IJBIC.2016.079570 Google Scholar
  22. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183. doi: 10.1016/j.isatra.2014.03.018 Google Scholar
  23. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845. doi: 10.1016/j.cnsns.2012.05.010 MathSciNetzbMATHGoogle Scholar
  24. Gandomi AH, Alavi AH (2015) An introduction of krill herd algorithm for engineering optimization. J Civil Eng Manag 22(3):302–310. doi: 10.3846/13923730.2014.897986 Google Scholar
  25. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336. doi: 10.1016/j.compstruc.2011.08.002 Google Scholar
  26. Gandomi AH, Alavi AH, Talatahari S (2013a) Structural optimization using krill herd algorithm. Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, Amsterdam, pp 335–349Google Scholar
  27. Gandomi AH, Talatahari S, Tadbiri F, Alavi AH (2013) Krill herd algorithm for optimum design of truss structures. Int J Bio Inspired Comput 5(5):281–288. doi: 10.1504/IJBIC.2013.057191 Google Scholar
  28. Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013c) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255. doi: 10.1007/s00521-012-1028-9 Google Scholar
  29. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. doi: 10.1177/003754970107600201 Google Scholar
  30. Goldberg DE (1998) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New YorkGoogle Scholar
  31. Gu B, Sheng VS (2016) A robust regularization path Algorithm for \(v\)-support vector classification. IEEE Trans Neural Netw Learn Syst. doi: 10.1109/TNNLS.2016.2527796 Google Scholar
  32. Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for \(v\)-support vector regression. Neural Netw 67:140–150. doi: 10.1016/j.neunet.2015.03.013 zbMATHGoogle Scholar
  33. Gu B, Sheng VS, Tay KY, Romano W, Li S (2015b) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416. doi: 10.1109/TNNLS.2014.2342533 MathSciNetGoogle Scholar
  34. Guo L, Wang G-G, Gandomi HA, Alavi HA, Duan H (2014) A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138:392–402. doi: 10.1016/j.neucom.2014.01.023 Google Scholar
  35. Jensi R, Jiji GW (2016) An improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clustering. Appl Soft Compt 46:230–245. doi: 10.1016/j.asoc.2016.04.026 Google Scholar
  36. Jiang P, Feng Y, Wu F, Yu S, Xu H (2016) Dynamic layered dual-cluster heads routing algorithm based on krill herd optimization in UWSNs. Sensors (Basel) 16(9):1379. doi: 10.3390/s16091379 Google Scholar
  37. Kalaiselvi D, Radhakrishnan R (2014) Multiconstrained QoS routing using a differentially guided krill herd algorithm in mobile Ad Hoc networks. Math Probl Eng 2014:1–10. doi: 10.1155/2015/862145 Google Scholar
  38. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471. doi: 10.1007/s10898-007-9149-x MathSciNetzbMATHGoogle Scholar
  39. Kavousi-Fard A, Akbari-Zadeh M-R, Dehghan B, Kavousi-Fard F (2014) A novel sufficient bio-inspired optimisation method based on modified krill herd algorithm to solve the economic load dispatch. Int J Bio Inspired Comput 6(6):416–423. doi: 10.1504/IJBIC.2014.066973 Google Scholar
  40. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Paper presented at the proceeding of the IEEE international conference on neural networks, Perth, Australia, 27 November–1 DecemberGoogle Scholar
  41. Khalil A, Fateen S-E, Bonilla-Petriciolet A (2015) MAKHA—a new hybrid swarm intelligence global optimization algorithm. Algorithms 8(2):336–366. doi: 10.3390/a8020336 MathSciNetGoogle Scholar
  42. Khatib W, Fleming P (1998) The stud GA: a mini revolution? In: Eiben A, Bäck T, Schoenauer M, Schwefel H-P (eds) Parallel problem solving from nature—PPSN V, vol 1498. Lecture notes in computer science. Springer, Berlin, pp 683–691. doi: 10.1007/BFb0056910
  43. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetzbMATHGoogle Scholar
  44. Kowalski P, Łukasik S (2015a) Experimental study of selected parameters of the krill herd algorithm. In: Angelov P, Atanassov KT, Doukovska L et al (eds) Intelligent systems 2014, vol 322. Advances in intelligent systems and computing. Springer, pp 473–485. doi: 10.1007/978-3-319-11313-5_42
  45. Kowalski PA, Łukasik S (2015b) Training neural networks with krill herd algorithm. Neural Process Lett 44(1):5–17. doi: 10.1007/s11063-015-9463-0 Google Scholar
  46. Lari NS, Abadeh MS (2014) A new approach to find optimum architecture of ANN and tuning it’s weights using krill-herd algorithm. In: 2014 international congress on technology, communication and knowledge (ICTCK 2014), Mashhad, Iran, 26–27 Nov. 2014. IEEE, pp 1–7. doi: 10.1109/ICTCK.2014.7033530
  47. Li X, Yin M (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97. doi: 10.1016/j.ins.2014.11.042 Google Scholar
  48. Li X, Wang J, Yin M (2013) Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput Appl 24(6):1233–1247. doi: 10.1007/s00521-013-1354-6 Google Scholar
  49. Li L, Zhou Y, Xie J (2014) A free search krill herd algorithm for functions optimization. Math Probl Eng 2014:1–21. doi: 10.1155/2014/936374 MathSciNetGoogle Scholar
  50. Li J, Tang Y, Hua C, Guan X (2014) An improved krill herd algorithm: krill herd with linear decreasing step. Appl Math Comput 234:356–367. doi: 10.1016/j.amc.2014.01.146 MathSciNetzbMATHGoogle Scholar
  51. Li Z-Y, Yi J-H, Wang G-G (2015) A new swarm intelligence approach for clustering based on krill herd with elitism strategy. Algorithms 8(4):951–964. doi: 10.3390/a8040951 MathSciNetGoogle Scholar
  52. Madamanchi D (2014) Evaluation of a new bio-inspired algorithm: krill herd. North Dakota State University, FargoGoogle Scholar
  53. Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: Tan Y, Shi Y, Coello CC (eds) Advances in swarm intelligence, vol 8794. Lecture notes in computer science. Springer, pp 86–94. doi: 10.1007/978-3-319-11857-4_10
  54. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. doi: 10.1007/s00521-015-1920-1 Google Scholar
  55. Mirjalili S, Mirjalili SM, Yang X-S (2013) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681. doi: 10.1007/s00521-013-1525-5 Google Scholar
  56. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci 269:188–209. doi: 10.1016/j.ins.2014.01.038 MathSciNetGoogle Scholar
  57. Moodley K, Rarey J, Ramjugernath D (2015) Application of the bio-inspired krill herd optimization technique to phase equilibrium calculations. Comput Chem Eng 74:75–88. doi: 10.1016/j.compchemeng.2014.12.008 Google Scholar
  58. Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solitons Fractals 78:10–21. doi: 10.1016/j.chaos.2015.06.020 MathSciNetGoogle Scholar
  59. Mukherjee A, Mukherjee V (2016) Chaotic krill herd algorithm for optimal reactive power dispatch considering FACTS devices. Appl Soft Compt 44:163–190. doi: 10.1016/j.ijepes.2016.02.039 Google Scholar
  60. Mukherjee A, Mukherjee V (2016) Chaos embedded krill herd algorithm for optimal VAR dispatch problem of power system. Int J Electr Power 82:37–48. doi: 10.1016/j.ijepes.2016.02.039 Google Scholar
  61. Mukherjee A, Mukherjee V (2016c) Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm. Int J Electr Power 78:700–714. doi: 10.1016/j.ijepes.2015.12.001 Google Scholar
  62. Mukherjee A, Roy PK, Mukherjee V (2016) Transient stability constrained optimal power flow using oppositional krill herd algorithm. Int J Electr Power 83:283–297. doi: 10.1016/j.ijepes.2016.03.058 Google Scholar
  63. Nasiri B, Meybodi MR (2016) History-driven firefly algorithm for optimisation in dynamic and uncertain environments. Int J Bio Inspired Comput 8(5):326–339. doi: 10.1504/IJBIC.2016.079575 Google Scholar
  64. Niknam T, Fard AK (2016) Optimal energy management of smart renewable micro-grids in the reconfigurable systems using adaptive harmony search algorithm. Int J Bio Inspired Comput 8(3):184–194. doi: 10.1504/IJBIC.2016.076634 Google Scholar
  65. Niu P, Chen K, Ma Y, Li X, Liu A, Li G (2016) Model turbine heat rate by fast learning network with tuning based on ameliorated krill herd algorithm. Knowl Based Syst 118:80–92. doi: 10.1016/j.knosys.2016.11.011 Google Scholar
  66. Pandey S, Patidar R, George NV (2014) Design of a krill herd algorithm based adaptive channel equalizer. In: 2014 international symposium on intelligent signal processing and communication systems (ISPACS 2014), Kuching, Malaysia, 1–4 Dec. 2014. IEEE, pp 257–260. doi: 10.1109/ISPACS.2014.7024463
  67. Penev K, Littlefair G (2005) Free search—a comparative analysis. Inf Sci 172(1–2):173–193. doi: 10.1016/j.ins.2004.09.001 MathSciNetGoogle Scholar
  68. Pulluri H, Naresh R, Sharma V (2016) A solution network based on stud krill herd algorithm for optimal power flow problems. Soft Comput. doi: 10.1007/s00500-016-2319-3 Google Scholar
  69. Pulluri H, Naresh R, Sharma V (2017) Application of stud krill herd algorithm for solution of optimal power flow problems. Int Trans Electr Energy Syst e2316. doi: 10.1002/etep.2316
  70. Puongyeam H, Pongcharoen P, Vitayasak S (2014) Application of krill herd (KH) algorithm for production scheduling in capital goods industries. In: International conference on challenges in IT, engineering and technology (ICCIET 2014), Phuket, Thailand, July 17–18, 2014. pp 67–72. doi: 10.15242/IIE.E0714054
  71. Ren Y-T, Qi H, Huang X, Wang W, Ruan L-M, Tan H-P (2016) Application of improved krill herd algorithms to inverse radiation problems. Int J Therm Sci 103:24–34. doi: 10.1016/j.ijthermalsci.2015.12.009 Google Scholar
  72. Rezoug A, Boughaci D (2016) A self-adaptive harmony search combined with a stochastic local search for the 0–1 multidimensional knapsack problem. Int J Bio Inspired Comput 8(4):234–239. doi: 10.1504/IJBIC.2016.078641 Google Scholar
  73. Rodrigues D, Pereira LA, Papa JP, Weber SA (2014) A binary krill herd approach for feature selection. In: 2014 22nd international conference on pattern recognition (ICPR 2014), Stockholm, Sweden, 24–28 Aug. 2014. IEEE, pp 1407–1412. doi: 10.1109/Icpr.2014.251
  74. Rostami M, Kavousi-Fard A, Niknam T (2015) Expected cost minimization of smart grids with plug-in hybrid electric vehicles using optimal distribution feeder reconfiguration. IEEE Trans Industr Inform 11(2):388–397. doi: 10.1109/TII.2015.2395957 Google Scholar
  75. Roy PK, Pradhan M, Paul T (2015) Krill herd algorithm applied to short-term hydrothermal scheduling problem. Ain Shams Eng J. doi: 10.1016/j.asej.2015.09.003 Google Scholar
  76. Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic krill herd optimization algorithm. Proc Technol 12:180–185. doi: 10.1016/j.protcy.2013.12.473 Google Scholar
  77. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio Inspired Comput 1(1):71–79Google Scholar
  78. Shanghooshabad AM, Abadeh MS (2016) Robust, interpretable and high quality fuzzy rule discovery using krill herd algorithm. J Intell Fuzzy Syst 20(3):1601–1612. doi: 10.3233/IFS-151867 Google Scholar
  79. Shi Y (2011) An optimization algorithm based on brainstorming process. Int J Swarm Intell Res 2(4):35–62. doi: 10.4018/jsir.2011100103 Google Scholar
  80. Shi Y, Xue J, Wu Y (2013) Multi-objective optimization based on brain storm optimization algorithm. Int J Swarm Intell Res 4(3):1–21. doi: 10.4018/ijsir.2013070101 Google Scholar
  81. Shumeet B (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie Mellon University, PittsburghGoogle Scholar
  82. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. doi: 10.1109/TEVC.2008.919004 Google Scholar
  83. Singh V, Sood MM (2013) Krill herd clustering algorithm using DBSCAN technique. Int J Comput Sci Eng Technol 4(3):197–201Google Scholar
  84. Singh GP, Singh A (2014) Comparative study of krill herd, firefly and cuckoo search algorithms for unimodal and multimodal optimization. Int J Intell Syst Appl 6(3):35–49. doi: 10.5815/ijisa.2014.03.04 Google Scholar
  85. Stasinakis C, Sermpinis G, Psaradellis I, Verousis T (2016) Krill-herd support vector regression and heterogeneous autoregressive leverage: evidence from forecasting and trading commodities. Quant Finance 16(12):1901–1915. doi: 10.1080/14697688.2016.1211800 MathSciNetzbMATHGoogle Scholar
  86. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. doi: 10.1023/a:1008202821328 MathSciNetzbMATHGoogle Scholar
  87. Sultana S, Roy PK (2015) Krill herd algorithm for optimal location of distributed generator in radial distribution system. Appl Soft Compt 40:391–404. doi: 10.1016/j.asoc.2015.11.036 Google Scholar
  88. Sultana S, Roy PK (2015) Oppositional krill herd algorithm for optimal location of distributed generator in radial distribution system. Int J Electr Power 73:182–191. doi: 10.1016/j.ijepes.2015.04.021 Google Scholar
  89. Sultana S, Roy PK (2016) Oppositional krill herd algorithm for optimal location of capacitor with reconfiguration in radial distribution system. Int J Electr Power 74:78–90. doi: 10.1016/j.ijepes.2015.07.008 Google Scholar
  90. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of congress on evolutionary computation (CEC 2004), Portland, USA, June 19–23 2004. IEEE, pp 325–331. doi: 10.1109/CEC.2004.1330875
  91. Sun S, Qi H, Zhao F, Ruan L, Li B (2016) Inverse geometry design of two-dimensional complex radiative enclosures using krill herd optimization algorithm. Appl Therm Eng 98:1104–1115. doi: 10.1016/j.applthermaleng.2016.01.017 Google Scholar
  92. Sur C, Shukla A (2014) Discrete krill herd algorithm—a bio-inspired meta-heuristics for graph based network route optimization. In: Natarajan R (ed) Distributed computing and internet technology, vol 8337. Lecture notes in computer science. Springer, pp 152–163. doi: 10.1007/978-3-319-04483-5_17
  93. Tan Y (2015) Fireworks algorithm—a novel swarm intelligence optimization method 2015. Springer, Berlin. doi: 10.1007/978-3-662-46353-6
  94. Tuba M, Bacanin N, Pelevic B (2014) Krill herd (KH) algorithm applied to the constrained portfolio selection problem. Int J Math Comput Simul 8:94–102Google Scholar
  95. Vincylloyd F, Anand B (2015) A double herd krill based algorithm for location area optimization in mobile wireless cellular network. Sci World J 2015:1–9. doi: 10.1155/2015/475806 Google Scholar
  96. Wang G, Guo L, Duan H, Liu L, Wang H, Shao M (2012) Path planning for uninhabited combat aerial vehicle using hybrid meta-heuristic DE/BBO algorithm. Adv Sci Eng Med 4(6):550–564. doi: 10.1166/asem.2012.1223 Google Scholar
  97. Wang G, Guo L, Duan H, Liu L, Wang H (2012b) A modified firefly algorithm for UCAV path planning. Int J Hybrid Inf Technol 5(3):123–144Google Scholar
  98. Wang G, Guo L, Duan H, Liu L, Wang H (2012c) Dynamic deployment of wireless sensor networks by biogeography based optimization algorithm. J Sens Actuator Netw 1(2):86–96. doi: 10.3390/jsan1020086 Google Scholar
  99. Wang G, Guo L, Duan H, Liu L, Wang H, Wang J (2012d) A hybrid meta-heuristic DE/CS algorithm for UCAV path planning. J Inf Comput Sci 9(16):4811–4818Google Scholar
  100. Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:1–21. doi: 10.1155/2013/696491 MathSciNetzbMATHGoogle Scholar
  101. Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10(10):2318–2328. doi: 10.1166/jctn.2013.3207 Google Scholar
  102. Wang G-G, Gandomi AH, Alavi AH (2013b) A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42(6):962–978. doi: 10.1108/K-11-2012-0108 MathSciNetGoogle Scholar
  103. Wang G, Guo L, Gandomi AH, Cao L, Alavi AH, Duan H, Li J (2013) Lévy-flight krill herd algorithm. Math Probl Eng 2013:1–14. doi: 10.1155/2013/682073 Google Scholar
  104. Wang G-G, Guo L, Gandomi AH, Alavi AH, Duan H (2013) Simulated annealing-based krill herd algorithm for global optimization. Abstr Appl Anal 2013:1–11. doi: 10.1155/2013/213853 MathSciNetzbMATHGoogle Scholar
  105. Wang G-G, Guo L, Duan H, Wang H (2014) A new improved firefly algorithm for global numerical optimization. J Comput Theor Nanosci 11(2):477–485. doi: 10.1166/jctn.2014.3383 Google Scholar
  106. Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2014b) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput 31(7):1198–1220. doi: 10.1108/EC-10-2012-0232 Google Scholar
  107. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34. doi: 10.1016/j.ins.2014.02.123 MathSciNetGoogle Scholar
  108. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014d) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871. doi: 10.1007/s00521-012-1304-8 Google Scholar
  109. Wang G-G, Gandomi AH, Alavi AH (2014e) Stud krill herd algorithm. Neurocomputing 128:363–370. doi: 10.1016/j.neucom.2013.08.031 Google Scholar
  110. Wang G-G, Gandomi AH, Alavi AH (2014f) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9–10):2454–2462. doi: 10.1016/j.apm.2013.10.052 MathSciNetzbMATHGoogle Scholar
  111. Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2014g) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput Appl 25(2):297–308. doi: 10.1007/s00521-013-1485-9 Google Scholar
  112. Wang G-G, Chang B, Zhang Z (2015a) A multi-swarm bat algorithm for global optimization. In: 2015 IEEE congress on evolutionary computation (CEC 2015), Sendai, Japan, May 25–28, 2015. IEEE, pp 480–485. doi: 10.1109/CEC.2015.7256928
  113. Wang G-G, Deb S, Coelho LDS (2015b) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio Inspired Comput. doi: 10.1504/IJBIC.2015.10004283
  114. Wang G-G, Deb S, Coelho LDS (2015c) Elephant herding optimization. In: 2015 3rd international symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, December 7–9 2015. IEEE, pp 1–5. doi: 10.1109/ISCBI.2015.8
  115. Wang G-G, Deb S, Gandomi AH, Alavi AH (2015d) A hybrid PBIL-based krill herd algorithm. In: 2015 3rd international symposium on computational and business intelligence, Bali, Indonesia, December 7–8, 2015. IEEE, pp 39–44. doi: 10.1109/ISCBI.2015.14
  116. Wang G-G, Deb S, Thampi SM (2015e) A discrete krill herd method with multilayer coding strategy for flexible job-shop scheduling problem. In: Berretti S, Thampi SM, Srivastava PR (eds) Advances in intelligent systems and computing, vol 384. Springer, pp 201–215. doi: 10.1007/978-3-319-23036-8_18
  117. Wang G-G, Gandomi AH, Alavi AH (2015f) Study of Lagrangian and evolutionary parameters in krill herd algorithm. In: Fister I, Fister Jr I (eds) Adaptation and hybridization in computational intelligence, vol 18. Adaptation, learning, and optimization. Springer, Cham, Switzerland, pp 111–128. doi: 10.1007/978-3-319-14400-9_5
  118. Wang G-G, Zhao X, Deb S (2015g) A novel monarch butterfly optimization with greedy strategy and self-adaptive crossover operator. In: 2015 2nd international conference on soft computing & machine intelligence (ISCMI 2015), Hong Kong, November 23–24, 2015 2015. IEEE, pp 45–50. doi: 10.1109/ISCMI.2015.19
  119. Wang G-G, Deb S, Cui Z (2015h) Monarch butterfly optimization. Neural Comput Appl. doi: 10.1007/s00521-015-1923-y Google Scholar
  120. Wang G-G (2016) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput. doi: 10.1007/s12293-016-0212-3 Google Scholar
  121. Wang G-G, Gandomi AH, Alavi AH, Dong Y-Q (2016a) A hybrid meta-heuristic method based on firefly algorithm and krill herd. In: Samui P (ed) Handbook of research on advanced computational techniques for simulation-based engineering. IGI, Hershey, PA, USA, pp 521–540. doi: 10.4018/978-1-4666-9479-8.ch019
  122. Wang G-G, Lu M, Zhao X-J (2016b) An improved bat algorithm with variable neighborhood search for global optimization. In: Paper presented at the 2016 IEEE congress on evolutionary computation (IEEE CEC 2016), Vancouver, 25–29 July, 2016Google Scholar
  123. Wang L, Jia P, Huang T, Duan S, Yan J, Wang L (2016c) A novel optimization technique to improve gas recognition by electronic noses based on the enhanced krill herd algorithm. Sensors (Basel) 16(8):1275. doi: 10.3390/s16081275 Google Scholar
  124. Wang G-G, Deb S, Gao X-Z, Coelho LdS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio Inspired Comput 8(6):394–409. doi: 10.1504/IJBIC.2016.10002274 Google Scholar
  125. Wang G-G, Gandomi AH, Zhao X, Chu HE (2016e) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285. doi: 10.1007/s00500-014-1502-7
  126. Wang G-G, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016f) Chaotic cuckoo search. Soft Comput 20(9):3349–3362. doi: 10.1007/s00500-015-1726-1 Google Scholar
  127. Wang G-G, Chu HE, Mirjalili S (2016g) Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp Sci Technol 49:231–238. doi: 10.1016/j.ast.2015.11.040 Google Scholar
  128. Wang G-G, Deb S, Gandomi AH, Alavi AH (2016h) Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 177:147–157. doi: 10.1016/j.neucom.2015.11.018 Google Scholar
  129. Wang G-G, Gandomi AH, Alavi AH, Deb S (2016i) A multi-stage krill herd algorithm for global numerical optimization. Int J Artif Intell Tools 25(2):1550030. doi: 10.1142/s021821301550030x Google Scholar
  130. Wang G-G, Deb S, Zhao X, Cui Z (2016j) A new monarch butterfly optimization with an improved crossover operator. Int J Oper Res. doi: 10.1007/s12351-016-0251-z
  131. Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2016) A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int J of Bio Inspired Comput 8(5):286–299. doi: 10.1504/IJBIC.2016.10000414 Google Scholar
  132. Wang G-G, Gandomi AH, Alavi AH, Deb S (2016l) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput Appl 27(4):989–1006. doi: 10.1007/s00521-015-1914-z Google Scholar
  133. Wang G-G, Lu M, Dong Y-Q, Zhao X-J (2016m) Self-adaptive extreme learning machine. Neural Comput Appl 27(2):291–303. doi: 10.1007/s00521-015-1874-3 Google Scholar
  134. Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(1):231–246. doi: 10.1007/s11277-014-1748-5 Google Scholar
  135. Xu Z, Unveren A, Acan A (2016) Probability collectives hybridised with differential evolution for global optimisation. Int J Bio Inspired Comput 8(3):133–153. doi: 10.1504/IJBIC.2016.076652 Google Scholar
  136. Yaghoobi S, Mojallali H (2016) Tuning of a PID controller using improved chaotic krill herd algorithm. Optik Int J Light Electron Opt 127(11):4803–4807. doi: 10.1016/j.ijleo.2016.01.055 Google Scholar
  137. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Abraham A, Carvalho A, Herrera F, Pai V (eds) Proceeding of world congress on nature & biologically inspired computing (NaBIC 2009), Coimbatore, India, 9–11 December, 2009. IEEE Publications, USA, pp 210–214. doi: 10.1109/NABIC.2009.5393690
  138. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio Inspired Comput 2(2):78–84. doi: 10.1504/IJBIC.2010.032124 Google Scholar
  139. Yang XS (2010b) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, FromeGoogle Scholar
  140. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483. doi: 10.1108/02644401211235834 Google Scholar
  141. Younesi A, Tohidi S (2015) Design of a sensorless controller for PMSM using krill herd algorithm. In: The 6th international power electronics drive systems and technologies conference (PEDSTC 2015) Shahid Beheshti University, Tehran, Iran, 3–4 February 2015. IEEE, pp 418–423. doi: 10.1109/PEDSTC.2015.7093311
  142. Zhao R, Tang W (2008) Monkey algorithm for global numerical optimization. J Uncertain Syst 2(3):165–176Google Scholar
  143. Zheng Y, Jeon B, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973. doi: 10.3233/IFS-141378 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of ComputerChina University of Petroleum (Huadong)QingdaoChina
  2. 2.College of Information Science and EngineeringOcean University of ChinaQingdaoChina
  3. 3.School of Computer ScienceJiangsu Normal UniversityXuzhouChina
  4. 4.Institute of Algorithm and Big Data AnalysisNortheast Normal UniversityChangchunChina
  5. 5.School of Computer ScienceNortheast Normal UniversityChangchunChina
  6. 6.School of BusinessStevens Institute of TechnologyHobokenUSA
  7. 7.BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUSA
  8. 8.Department of Civil and Environmental EngineeringMichigan State UniversityEast LansingUSA
  9. 9.School of Information Sciences and TechnologyQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations