Advertisement

Artificial Intelligence Review

, Volume 51, Issue 1, pp 33–60 | Cite as

Local and global feature selection for multilabel classification with binary relevance

An empirical comparison on flat and hierarchical problems
  • André MeloEmail author
  • Heiko Paulheim
Article

Abstract

Multilabel classification has become increasingly important for various use cases. Amongst the existing multilabel classification methods, problem transformation approaches, such as Binary Relevance, Pruned Problem Transformation, and Classifier Chains, are some of the most popular, since they break a global multilabel classification problem into a set of smaller binary or multiclass classification problems. Transformation methods enable the use of two different feature selection approaches: local, where the selection is performed independently for each of the transformed problems, and global, where the selection is performed on the original dataset, meaning that all local classifiers work on the same set of features. While global methods have been widely researched, local methods have received little attention so far. In this paper, we compare those two strategies on one of the most straight forward transformation approaches, i.e., Binary Relevance. We empirically compare their performance on various flat and hierarchical multilabel datasets of different application domains. We show that local outperforms global feature selection in terms of classification accuracy, without drawbacks in runtime performance.

Keywords

Multilabel classification Transformation methods Local feature selection Global feature selection Binary relevance 

Notes

Acknowledgements

The work presented in this paper has been partly supported by the Ministry of Science, Research and the Arts Baden-Württemberg in the project \(\hbox {SyKo}^2\hbox {W}^2\) (Synthesis of Completion and Correction of Knowledge Graphs on the Web).

References

  1. Bi W, Kwok JT (2011) Multi-label classification on tree- and dag-structured hierarchies. In: Getoor L, Scheffer T (eds) Proceedings of the 28th international conference on machine learning (ICML-11). ACM, New York, NY, USA, pp 17–24. http://www.icml-2011.org/papers/10_icmlpaper.pdf
  2. Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Semant Web Inf Syst 5(3):1–22CrossRefGoogle Scholar
  3. Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S (2009) DBpedia—a crystallization point for the Web of Data. Web Semant 7(3):154–165CrossRefGoogle Scholar
  4. Blockeel H, Raedt LD, Ramong J (1998) Top-down induction of clustering trees. In: In Proceedings of the 15th international conference on machine learning, Morgan Kaufmann, pp 55–63Google Scholar
  5. Boutell MR, Luo J, Shen X, Brown CM (2004) Learning multi-label scene classification. Pattern Recognition 37(9):1757–1771. doi: 10.1016/j.patcog.2004.03.009. http://www.sciencedirect.com/science/article/B6V14-4CF14JX-1/2/a17089f241a1d23f218e55d2c8d9f763
  6. Briggs F, Huang Y, Raich R, Eftaxias K, Lei Z, Cukierski W, Hadley S, Hadley A, Betts M, Fern X, Irvine J, Neal L, Thomas A, Fodor G, Tsoumakas G, Ng HW, Nguyen TNT, Huttunen H, Ruusuvuori P, Manninen T, Diment A, Virtanen T, Marzat J, Defretin J, Callender D, Hurlburt C, Larrey K, Milakov M (2013) The 9th annual mlsp competition: New methods for acoustic classification of multiple simultaneous bird species in a noisy environment. In: 2013 IEEE international workshop on machine learning for signal processing (MLSP), pp 1–8. doi: 10.1109/MLSP.2013.6661934
  7. Brucker F, Benites F, Sapozhnikova E (2011) An empirical comparison of flat and hierarchical performance measures for multi-label classification with hierarchy extraction, Springer, Berlin, Heidelberg, pp 579–589. doi: 10.1007/978-3-642-23851-2_59
  8. Carlson A, Betteridge J, Wang RC, Hruschka Jr ER, Mitchell TM (2010) Coupled semi-supervised learning for information extraction. In: Proceedings of the third ACM international conference on Web search and data mining, ACM, pp 101–110Google Scholar
  9. Cerri R, Pappa GL, de Leon Ferreira de Carvalho ACP, Freitas AA (2015) An extensive evaluation of decision tree-based hierarchical multilabel classification methods and performance measures. Comput Intell 31(1):1–46. doi: 10.1111/coin.12011 MathSciNetCrossRefGoogle Scholar
  10. Cesa-bianchi N, Zaniboni L, Collins M (2004) Incremental algorithms for hierarchical classification. J Mach Learn Res :31–54Google Scholar
  11. Clare A, King RD (2001) Knowledge discovery in multi-label phenotype data. In: Proceedings of the 5th european conference on principles of data mining and knowledge discovery, PKDD’01, pp 42–53Google Scholar
  12. Costa E, Lorena A, Carvalho A, Freitas A (2007) A review of performance evaluation measures for hierarchical classifiers. In: Drummond C, Elazmeh W, Japkowicz N, Macskassy S (eds) Evaluation methods for machine learning II: papers from the AAAI-2007 Workshop, AAAI Technical Report WS-07-05, AAAI Press, pp 182–196. http://www.cs.kent.ac.uk/pubs/2007/2611
  13. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(3):131–156CrossRefGoogle Scholar
  14. de Lannoy G, Franois D, Verleysen M (2011) Class-specific feature selection for one-against-all multiclass svms. In: ESANN. http://dblp.uni-trier.de/db/conf/esann/esann2011.html#LannoyFV11
  15. Dimitrovski I, Kocev D, Loskovska S, Dzeroski S (2011) Hierarchical annotation of medical images. Pattern Recogn 44(10–11): 2436–2449. http://dblp.uni-trier.de/db/journals/pr/pr44.html#DimitrovskiKLD11
  16. Diplaris S, Tsoumakas G, Mitkas PA, Vlahavas IP (2005) Protein classification with multiple algorithms. In: Bozanis P, Houstis EN (eds) Panhellenic conference on informatics, Lecture notes in computer science, vol. 3746, Springer, pp 448–456. http://dblp.uni-trier.de/db/conf/pci/pci2005.html#DiplarisTMV05
  17. Doquire G, Verleysen M (2011) Feature selection for multi-label classification problems. In: Cabestany J, Rojas I, Caparrós GJ (eds) Advances in computational intelligence - 11th international work-conference on artificial neural networks, IWANN 2011, Torremolinos-Málaga, Spain. Proceedings, Part I, Lecture notes in computer science, vol. 6691, Springer, pp 9–16. doi: 10.1007/978-3-642-21501-8_2
  18. Duygulu P, Barnard K, Freitas JFGd, Forsyth DA (2002) Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Proceedings of the 7th European conference on computer vision-part IV, ECCV ’02, Springer, London, pp 97–112.http://dl.acm.org/citation.cfm?id=645318.649254
  19. Eisner R, Poulin B, Szafron D, Lu P, Greiner R (2005) Improving protein function prediction using the hierarchical structure of the gene ontology. In: Proceedings of IEEE CIBCBGoogle Scholar
  20. Elisseeff A, Weston J (2002) A kernel method for multi-labelled classification. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems 14 (NIPS-01), pp 681–687Google Scholar
  21. Fagni T, Sebastiani F (2007) On the selection of negative examples for hierarchical text categorization. In: Proceedings of The 3rd language technology conference, pp 24–28Google Scholar
  22. Huda S, Yearwood J, Stranieri A (2011) Hybrid wrapper-filter approaches for input feature selection using maximum relevance-minimum redundancy and artificial neural network input gain measurement approximation (annigma). In: Proceedings of the thirty-fourth australasian computer science conference - Volume 113, ACSC ’11, Australian Computer Society, Inc., Darlinghurst, Australia, pp 43–52. http://dl.acm.org/citation.cfm?id=2459296.2459302
  23. Katakis I, Tsoumakas G, Vlahavas I (2008) Multilabel text classification for automated tag suggestion. In: Proceedings of the ECML/PKDD-08 workshop on discovery challengeGoogle Scholar
  24. Kira K, Rendell LA (1992) The feature selection problem: Traditional methods and a new algorithm. In: Proceedings of the tenth national conference on artificial intelligence, AAAI’92, AAAI Press, pp 129–134. http://dl.acm.org/citation.cfm?id=1867135.1867155
  25. Kiritchenko S, Matwin S, Famili AF (2005) Functional annotation of genes using hierarchical text categorization. In: Proceedings of the BioLINK SIG: linking literature, information and knowledge for biology (held at ISMB-05)Google Scholar
  26. Kiritchenko S, Matwin S, Nock R, Famili AF (2006) Learning and evaluation in the presence of class hierarchies: application to text categorization. In: Proceedings of the 19th international conference on advances in artificial intelligence: Canadian society for computational studies of intelligence, AI’06, Springer, Berlin, Heidelberg, pp 395–406. doi: 10.1007/11766247_34
  27. Kosmopoulos A, Paliouras G, Androutsopoulos I (2014) The effect of dimensionality reduction on large scale hierarchical classification. In: Proceedings of information access evaluation. multilinguality, multimodality, and interaction - 5th international conference of the clef initiative, CLEF 2014, Sheffield, UK, pp 160–171. doi: 10.1007/978-3-319-11382-1_16
  28. Kosmopoulos A, Partalas I, Gaussier E, Paliouras G, Androutsopoulos I (2015) Evaluation measures for hierarchical classification: a unified view and novel approaches. Data Min Knowl Discov 29(3):820–865. doi: 10.1007/s10618-014-0382-x MathSciNetCrossRefGoogle Scholar
  29. Kozachenko LF, Leonenko NN (1987) Sample estimate of the entropy of a random vector. Probl Inf Trans 23(1–2):95–101zbMATHGoogle Scholar
  30. Labrou YK (1999) Yahoo as an ontology - using Yahoo categories to describe documents. In: Proceedings of the 1999 ACM conference on information and knowledge management (CIKM’99)Google Scholar
  31. Lewis DD, Yang Y, Rose TG, Li F (2004) Rcv1: a new benchmark collection for text categorization research. J Mach Learn Res 5: 361–397. http://dl.acm.org/citation.cfm?id=1005332.1005345
  32. Madjarov G, Kocev D, Gjorgjevikj D, Deroski S (2012) An extensive experimental comparison of methods for multi-label learning. Pattern Recogn 45(9):3084–3104CrossRefGoogle Scholar
  33. Mahdisoltani F, Biega J, Suchanek FM (2015) YAGO3: a knowledge base from multilingual wikipedias. In: Conference on innovative data systems researchGoogle Scholar
  34. Melo A, Paulheim H, Völker J (2016) Type prediction in rdf knowledge bases using hierarchical multilabel classification. In: 6th international conference on web-intelligence, mining and semantics (WIMS)Google Scholar
  35. Molina LC, Belanche L, Nebot À (2002) Feature selection algorithms: a survey and experimental evaluation. In: International conference on data mining (ICDM), IEEE, pp 306–313Google Scholar
  36. Opitz DW (1999) Feature selection for ensembles. In: Proceedings of 16th national conference on artificial intelligence AAAI Press, pp 379–384Google Scholar
  37. Otero FE, Freitas AA, Johnson CG (2009) A hierarchical classification ant colony algorithm for predicting gene ontology terms. In: Proceedings of the 7th European conference on evolutionary computation, machine learning and data mining in bioinformatics, EvoBIO ’09, Springer, Berlin, Heidelberg, pp 68–79. doi: 10.1007/978-3-642-01184-9_7
  38. Partalas I, Kosmopoulos A, Baskiotis N, Artieres T, Paliouras G, Gaussier E, Androutsopoulos I, Amini MR, Galinari P (2015) Lshtc: a benchmark for large-scale text classification. CoRR abs/1503.08581. http://arxiv.org/abs/1503.08581
  39. Paulheim H, Fürnkranz J (2012) Unsupervised generation of data mining features from linked open data. In: International conference on web intelligence, mining, and semantics (WIMS’12)Google Scholar
  40. Pestian JP, Brew C, Matykiewicz P, Hovermale DJ, Johnson N, Cohen KB, Duch W (2007) A shared task involving multi-label classification of clinical free text. In: Proceedings of the workshop on BioNLP 2007: biological, translational, and clinical language processing, BioNLP ’07, Association for Computational Linguistics, Stroudsburg, PA, USA, pp 97–104. http://dl.acm.org/citation.cfm?id=1572392.1572411
  41. Qu H, Zhang S, Liu H, Zhao J (2011) A multi-label classification algorithm based on label-specific features. Wuhan Univ J Nat Sci 16(6):520–524. doi: 10.1007/s11859-011-0791-2 CrossRefGoogle Scholar
  42. Read J (2008) A pruned problem transformation method for multi-label classification. In: Proceedings of 2008 New Zealand computer science research student conference (NZCSRS), pp 143–150Google Scholar
  43. Read J, Bifet A, Holmes G, Pfahringer B (2012) Scalable and efficient multi-label classification for evolving data streams. Mach Learn 88(1–2):243–272. doi: 10.1007/s10994-012-5279-6 MathSciNetCrossRefGoogle Scholar
  44. Read J, Pfahringer B, Holmes G (2008) Multi-label classification using ensembles of pruned sets. In: ICDM, IEEE Computer Society, pp 995–1000. http://dblp.uni-trier.de/db/conf/icdm/icdm2008.html#ReadPH08
  45. Read J, Pfahringer B, Holmes G, Frank E (2009) Classifier chains for multi-label classification. In: Proceedings of the european conference on machine learning and knowledge discovery in databases: Part II, ECML PKDD’09, pp 254–269Google Scholar
  46. Ristoski P, Paulheim H (2014) A comparison of propositionalization strategies for creating features from linked open data. In: LD4KDGoogle Scholar
  47. Ristoski P, de Vries GKD, Paulheim H (2016) A collection of benchmark datasets for systematic evaluations of machine learning on the semantic web. In: International semantic web conference, SpringerGoogle Scholar
  48. Saeys Y, Abeel T, Peer Y (2008) Robust feature selection using ensemble feature selection techniques. In: Proceedings of the European conference on machine learning and knowledge discovery in databases - Part II, ECML PKDD ’08, Springer, Berlin, Heidelberg, pp 313–325. doi: 10.1007/978-3-540-87481-2_21
  49. Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach Learn 39(2/3):135–168CrossRefzbMATHGoogle Scholar
  50. Silla CN Jr, Freitas AA (2011) A survey of hierarchical classification across different application domains. Data Min Knowl Discov 22(1–2):31–72. doi: 10.1007/s10618-010-0175-9 MathSciNetCrossRefzbMATHGoogle Scholar
  51. Slavkov I, Karcheska J, Kocev D, Kalajdziski S, Dzeroski S (2013) Relieff for hierarchical multi-label classification. In: Appice A, Ceci M, Loglisci C, Manco G, Masciari E, Ras ZW (eds) New frontiers in mining complex patterns - second international workshop, NFMCP 2013, held in conjunction with ECML-PKDD 2013, Prague, Czech Republic, September 27, 2013, Revised selected papers, Lecture notes in computer science, vol 8399, Springer, pp 148–161. doi: 10.1007/978-3-319-08407-7_10
  52. Spolaôr N, Tsoumakas G (2013) Evaluating feature selection methods for multi-label text classication. In: Ngomo AN, Paliouras G (eds) Proceedings of the first Workshop on bio-medical semantic indexing and question answering, a post-conference workshop of conference and labs of the evaluation forum 2013 (CLEF 2013) , Valencia, Spain, September 27th, 2013, CEUR Workshop Proceedings, vol 1094. CEUR-WS.orgGoogle Scholar
  53. Srivastava A, Zane-Ulman B (2005) Discovering recurring anomalies in text reports regarding complex space systems. In: Proceedings of the 2005 IEEE aerospace conferenceGoogle Scholar
  54. Trohidis K., Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi-label classification of music into emotions. In: Bello JP, Chew E, Turnbull D (eds) ISMIR, pp 325–330. http://dblp.uni-trier.de/db/conf/ismir/ismir2008.html#TrohidisTKV08
  55. Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Warehous Min 2007:1–13CrossRefGoogle Scholar
  56. Tsoumakas G, Katakis I, Vlahavas I (2011) Random k-labelsets for multi-label classification. IEEE Trans Knowl Data Eng. doi: 10.1109/TKDE.2010.164
  57. Tsoumakas G, Katakis I, Vlahavas I (2008) Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings ECML/PKDD 2008 workshop on mining multidimensional data (MMD’08)Google Scholar
  58. Turnbull D, Barrington L, Torres DA, Lanckriet GRG (2008) Semantic annotation and retrieval of music and sound effects. IEEE Trans Audio Speech Lang Process 16(2): 467–476. http://dblp.uni-trier.de/db/journals/taslp/taslp16.html#TurnbullBTL08
  59. Ueda N, Saito K (2003) Parametric mixture models for multi-labeled text. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems 15, MIT Press, pp 737–744. http://papers.nips.cc/paper/2244-parametric-mixture-models-for-multi-labeled-text.pdf
  60. Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H (2008) Decision trees for hierarchical multi-label classification. Mach Learn 73(2):185–214CrossRefGoogle Scholar
  61. Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledge base. Commun ACM 57(10):78–85CrossRefGoogle Scholar
  62. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83. doi: 10.2307/3001968 CrossRefGoogle Scholar
  63. Zhang M, Wu L (2015) Lift: Multi-label learning with label-specific features. IEEE Trans Pattern Anal Mach Intell 37(1):107–120. doi: 10.1109/TPAMI.2014.2339815 CrossRefGoogle Scholar
  64. Zhang M, Zhou Z (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837. doi: 10.1109/TKDE.2013.39 CrossRefGoogle Scholar
  65. Zhang ML, Peña JM, Robles V (2009) Feature selection for multi-label naive bayes classification. Inf Sci 179(19):3218–3229. doi: 10.1016/j.ins.2009.06.010 CrossRefzbMATHGoogle Scholar
  66. Zhang ML, Zhou ZH (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038–2048CrossRefzbMATHGoogle Scholar
  67. Zhu Z, Ong YS, Dash M (2007) Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans Syst Man Cybern Part B 37(1):70–76. http://dblp.uni-trier.de/db/journals/tsmc/tsmcb37.html#ZhuOD07

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.MannheimGermany
  2. 2.MannheimGermany

Personalised recommendations