Artificial Intelligence Review

, Volume 47, Issue 4, pp 417–462 | Cite as

Plant intelligence based metaheuristic optimization algorithms

  • Sinem AkyolEmail author
  • Bilal Alatas


Classical optimization algorithms are insufficient in large scale combinatorial problems and in nonlinear problems. Hence, metaheuristic optimization algorithms have been proposed. General purpose metaheuristic methods are evaluated in nine different groups: biology-based, physics-based, social-based, music-based, chemical-based, sport-based, mathematics-based, swarm-based, and hybrid methods which are combinations of these. Studies on plants in recent years have showed that plants exhibit intelligent behaviors. Accordingly, it is thought that plants have nervous system. In this work, all of the algorithms and applications about plant intelligence have been firstly collected and searched. Information is given about plant intelligence algorithms such as Flower Pollination Algorithm, Invasive Weed Optimization, Paddy Field Algorithm, Root Mass Optimization Algorithm, Artificial Plant Optimization Algorithm, Sapling Growing up Algorithm, Photosynthetic Algorithm, Plant Growth Optimization, Root Growth Algorithm, Strawberry Algorithm as Plant Propagation Algorithm, Runner Root Algorithm, Path Planning Algorithm, and Rooted Tree Optimization.


Plant intelligence Global optimization Metaheuristic methods 


  1. Abdel-Raouf O, Abdel-Baset M, El-henawy I (2014a) An improved flower pollination algorithm with chaos. Int J Edu Manage Eng 4:1CrossRefGoogle Scholar
  2. Abdel-Raouf O, Abdel-Baset M, El-henawy I (2014b) A new hybrid flower pollination algorithm for solving constrained global optimization problems. Int J Appl Op Res 4:1–13CrossRefGoogle Scholar
  3. Abdel-Raouf O, El-Henawy I, Abdel-Baset M (2014c) A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles. Int J Mod Edu Comput Sci 6:38CrossRefGoogle Scholar
  4. Ahmadi M, Mojallali H (2012) Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems. Chaos Solitons fractals 45:1108–1120MathSciNetCrossRefGoogle Scholar
  5. Alatas B (2011a) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180CrossRefGoogle Scholar
  6. Alatas B (2011b) Photosynthetic algorithm approaches for bioinformatics. Expert Syst Appl 38:10541–10546CrossRefGoogle Scholar
  7. Atashpaz-Gargari E, Lucas C (2007a) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. 25–28 Sept. pp 4661–4667. doi: 10.1109/CEC.2007.4425083
  8. Atashpaz-Gargari E, Lucas C (2007b) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE congress on evolutionary computation. CEC 2007, pp 4661–4667. doi: 10.1109/CEC.2007.4425083
  9. Basak A, Pal S, Das S, Abraham A, Snasel V (2010) A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis. In: IEEE congress on evolutionary computation (CEC). 18–23 July. pp 1–8. doi: 10.1109/CEC.2010.5586276
  10. Borji A (2007) A new global optimization algorithm inspired by parliamentary political competitions. In: MICAI 2007: advances in artificial intelligence. Springer, pp 61–71. doi: 10.1007/978-3-540-76631-5_7
  11. Cai W, Yang W, Chen X (2008) A global optimization algorithm based on plant growth theory: plant growth optimization. In: 2008 International conference on intelligent computation technology and automation (ICICTA). 20–22 Oct. pp 1194–1199. doi: 10.1109/ICICTA.2008.416
  12. Cai X, Fan S, Tan Y (2012) Light responsive curve selection for photosynthesis operator of APOA. Int J Bio-Inspired Comput 4:373–379. doi: 10.1504/IJBIC.2012.051411 CrossRefGoogle Scholar
  13. Cai X, Li P, Wu X (2014) Artificial plant optimization algorithm with double selection strategies for DV-Hop. Sensor Lett 12:1383–1387. doi: 10.1166/sl.2014.3356 CrossRefGoogle Scholar
  14. Cai X, Wu X, Wang L, Kang Q, Wu Q (2013) Hydrophobic-polar model structure prediction with binary-coded artificial plant optimization algorithm. J Comput Theor Nanosci 10:1550–1554. doi: 10.1166/jctn.2013.3439 CrossRefGoogle Scholar
  15. Cheng M, Dawei D, Pandeng Z, Jia L, Fei L (2011) A novel method using PFA in parameters turning of PID controller of high-order system. In: 2011 IEEE international conference on information and automation (ICIA). 6–8 June, pp 662–665. doi: 10.1109/ICINFA.2011.5949076
  16. Chu S-C, Tsai P-W, Pan J-S (2006) Cat swarm optimization. In: PRICAI 2006: trends in artificial intelligence. Springer. pp 854–858. doi: 10.1007/978-3-540-36668-3_94
  17. Cui Z, Fan S, Zeng J, Shi Z (2013) Artificial plant optimisation algorithm with three-period photosynthesis. Int J Bio-Inspired Comput 5:133–139. doi: 10.1504/IJBIC.2013.053507 CrossRefGoogle Scholar
  18. Cui Z, Liu D, Zeng J, Shi Z (2012) Using splitting artificial plant optimization algorithm to solve toy model of protein folding. J Comput Theor Nanosci 9:2255–2259. doi: 10.1166/jctn.2012.2647 CrossRefGoogle Scholar
  19. Cui Z, Liu W, Dai C, Chen W (2014) Artificial plant optimization algorithm with dynamic local search for optimal coverage configuration. Sensor Lett 12:118–122. doi: 10.1166/sl.2014.3238 CrossRefGoogle Scholar
  20. Cui Z, Liu X, Liu D, Zeng J, Shi Z (2013) Using gravitropism artificial plant optimization algorithm to solve toy model of protein folding. J Comput Theor Nanosci 10:1540–1544. doi: 10.1166/jctn.2013.3437 CrossRefGoogle Scholar
  21. Cura T (2008) Modern sezgisel teknikler ve uygulamaları. Papatya Yayıncılık,Google Scholar
  22. Dorigo M, Maniezzo V, Colorni A (1991) The ant system: an autocatalytic optimizing process. Technical ReportGoogle Scholar
  23. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68CrossRefGoogle Scholar
  24. Ghasemi M, Ghavidel S, Akbari E, Vahed AA (2014) Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos. Energy 73:340–353. doi: 10.1016/ CrossRefGoogle Scholar
  25. Ghasemi M, Ghavidel S, Rahmani S, Roosta A, Falah H (2014b) Novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng Appl Artif Intell 29:54–69. doi: 10.1016/j.engappai.2013.11.003 CrossRefGoogle Scholar
  26. Ghasemi M, Taghizadeh M, Ghavidel S, Abbasian A (2016) Colonial competitive differential evolution: an experimental study for optimal economic load dispatch. Appl Soft Comput 40:342–363. doi: 10.1016/j.asoc.2015.11.033 CrossRefGoogle Scholar
  27. Ghasemi M, Taghizadeh M, Ghavidel S, Aghaei J, Abbasian A (2015) Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm. Eng Appl Artif Intel 39:100–108. doi: 10.1016/j.engappai.2014.12.001 CrossRefGoogle Scholar
  28. He S, Wu QH, Saunders JR (2006) A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE international conference on evolutionary computation. 1272–1278. doi: 10.1109/CEC.2006.1688455
  29. He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evolut Comput 13:973–990. doi: 10.1109/TEVC.2009.2011992 CrossRefGoogle Scholar
  30. Holland J (1975) Adaption in natural and artificial systems. The University of Michigan Press, Ann ArborzbMATHGoogle Scholar
  31. Jin X, Reynolds RG (1999) Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. In: 1999 IEEE congress on evolutionary computation, CEC 99. vol. 3. pp. 1678. doi: 10.1109/CEC.1999.785475
  32. Kanagasabai L, RavindhranathReddy B (2014) Reduction of real power loss by using fusion of flower pollination algorithm with particle swarm optimization. J Inst Ind Appl Eng 2:97–103Google Scholar
  33. Karaboğa D (2011) Yapay Zeka Optimizasyon Algoritmaları. Nobel Yayın DağıtımGoogle Scholar
  34. Karci A (2007a) Human being properties of saplings growing up algorithm. In: IEEE international conference on computational cybernetics. ICCC 2007. 19–21 Oct. pp 227–232. doi: 10.1109/ICCCYB.2007.4402039
  35. Karci A (2007b) Natural inspired computational intelligence method: saplings growing up algorithm. In: IEEE international conference on computational cybernetics. ICCC 2007. 19–21 Oct. pp 221–226. doi: 10.1109/ICCCYB.2007.4402038
  36. Karci A (2007c) Theory of saplings growing up algorithm. In: adaptive and natural computing algorithms. lecture notes in computer science. Berlin: Springer. Heidelberg. pp 450–460. doi: 10.1007/978-3-540-71618-1_50
  37. Karci A, Alatas B (2006) Thinking Capability of saplings growing up algorithm. In: Intelligent data engineering and automated learning—IDEAL 2006. vol 4224. Lecture notes in computer Science. Springer, Berlin, pp 386–393. doi: 10.1007/11875581_47
  38. Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58:1269–1278. doi: 10.1109/TAP.2010.2041163 CrossRefGoogle Scholar
  39. Kashan AH (2009) League championship algorithm: a new algorithm for numerical function optimization. In: IEEE international conference of soft computing and pattern recognition. SOCPAR’09. pp 43–48. doi: 10.1109/SoCPaR.2009.21
  40. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mechanica 213:267–289. doi: 10.1007/s00707-009-0270-4 CrossRefzbMATHGoogle Scholar
  41. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks. Piscataway, NJ. pp 1942–1948Google Scholar
  42. Kong X, Chen YL, Xie W, Wu X (2012) A novel paddy field algorithm based on pattern search method. In: 2012 International conference on information and automation (ICIA). 6–8 June. pp 686–690. doi: 10.1109/ICInfA.2012.6246764
  43. Kostrzewa D, Josiński H (2009) The comparison of an adapted evolutionary algorithm with the invasive weed optimization algorithm based on the problem of predetermining the progress of distributed data merging process. In: Man-Machine Interactions. vol 59. Adv Intel Soft Comput. Berlin: Springer Heidelberg. pp 505–514. doi: 10.1007/978-3-642-00563-3_53
  44. Labbi Y, Attous DB, Gabbar HA, Mahdad B, Zidan A (2016) A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int J Electr Power Energy Syst 79:298–311. doi: 10.1016/j.ijepes.2016.01.028 CrossRefGoogle Scholar
  45. Lam AYS, Li VOK (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evolut Comput 14:381–399. doi: 10.1109/TEVC.2009.2033580 CrossRefGoogle Scholar
  46. Lenin K (2014) Shrinkage of active power loss by hybridization of flower pollination algorithm with chaotic harmony search algorithm. Control Theory Inform 4:31–38Google Scholar
  47. Li Y, Yang F, OuYang J, Zhou H (2011) Yagi-Uda antenna optimization based on invasive weed optimization method. Electromagnetics 31:571–577. doi: 10.1080/02726343.2011.621108 CrossRefGoogle Scholar
  48. Liu D, Cui Z (2013) Protein folding structure prediction with artificial plant optimization algorithm based golden section and limited memory Broyden–Fletcher–Goldfarb–Shanno. J Bionanosci 7:114–120. doi: 10.1166/jbns.2013.1103 CrossRefGoogle Scholar
  49. Łukasik S, Kowalski P (2015) Study of flower pollination algorithm for continuous optimization. In: Intelligent systems’2014. vol 322. Advances in intelligent systems and computing. Springer International Publishing. pp 451–459. doi: 10.1007/978-3-319-11313-5_40
  50. Mallahzadeh ARR, Oraizi H, Davoodi-Rad Z (2008) Application of the invasive weed optimization technique for antenna configurations. Prog Electromag Res 79:137–150. doi: 10.2528/PIER07092503 CrossRefGoogle Scholar
  51. Maniezzo V, Stützle T, Voss S (2009) Matheuristics: hybridizing metaheuristics and mathematical programming, vol 10. Springer, New YorkzbMATHGoogle Scholar
  52. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1:355–366. doi: 10.1016/j.ecoinf.2006.07.003 CrossRefGoogle Scholar
  53. Mehrabian AR, Yousefi-Koma A (2007) Optimal positioning of piezoelectric actuators on a smart fin using bio-inspired algorithms. Aerosp Sci Technol 11:174–182. doi: 10.1016/j.ast.2007.01.001 CrossRefGoogle Scholar
  54. Merrikh-Bayat F (2015) The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput 33:292–303. doi: 10.1016/j.asoc.2015.04.048 CrossRefGoogle Scholar
  55. Monavar FM, Komjani N (2011) Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach. Prog Electromagn Res 121:103–120. doi: 10.2528/PIER11051305 CrossRefGoogle Scholar
  56. Murase H (2000) Finite element inverse analysis using a photosynthetic algorithm. Comput Electr Agr 29:115–123. doi: 10.1016/S0168-1699(00)00139-3 CrossRefGoogle Scholar
  57. Nikoofard AH, Hajimirsadeghi H, Rahimi-Kian A, Lucas C (2012) Multiobjective invasive weed optimization: application to analysis of pareto improvement models in electricity markets. Appl Soft Comput 12:100–112. doi: 10.1016/j.asoc.2011.09.005 CrossRefGoogle Scholar
  58. Okayama T, Murase H (2002) Solution for N-Queens problem using a photosynthetic algorithm. In: 15th Triennial World Congress IFACGoogle Scholar
  59. Platt GM (2014) Computational experiments with flower pollination algorithm in the calculation of double retrograde dew points. Int Rev Chem Eng 6(2):95–99Google Scholar
  60. Pourjafari E, Mojallali H (2012) Solving nonlinear equations systems with a new approach based on invasive weed optimization algorithm and clustering. Swarm Evolut Comput 4:33–43. doi: 10.1016/j.swevo.2011.12.001 CrossRefGoogle Scholar
  61. Prathiba R, Moses MB, Sakthivel S (2014) Flower pollination algorithm applied for different economic load dispatch problems. Int J Eng Technol 6:1009–1016Google Scholar
  62. Premaratne U, Samarabandu J, Sidhu T (2009) A new biologically inspired optimization algorithm. in: 2009 international conference on industrial and information systems (ICIIS). 28–31 Dec. pp 279–284. doi: 10.1109/ICIINFS.2009.5429852
  63. Qi X, Zhu Y, Chen H, Zhang D, Niu B (2013) An idea based on plant root growth for numerical optimization. In: Intelligent computing theories and technology. vol 7996. Lecture notes in computer science. Springer, pp 571–578. doi: 10.1007/978-3-642-39482-9_66
  64. Rad HS, Lucas C (2007) A recommender system based on invasive weed optimization algorithm. In: IEEE congress on evolutionary computation, CEC 2007. 25–28 Sept. pp 4297–4304. doi: 10.1109/CEC.2007.4425032
  65. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based Optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Des 43:303–315. doi: 10.1016/j.cad.2010.12.015 CrossRefGoogle Scholar
  66. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. doi: 10.1016/j.ins.2009.03.004 CrossRefzbMATHGoogle Scholar
  67. Roy GG, Das S, Chakraborty P, Suganthan PN (2011) Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm. IEEE Trans Antennas Propag 59:110–118. doi: 10.1109/TAP.2010.2090477 CrossRefGoogle Scholar
  68. Sakib N, Kabir M, Subbir M, Alam S (2014) A comparative study of flower pollination algorithm and bat algorithm on continuous optimization problems. Int J Appl Inf Syst 7:19–20Google Scholar
  69. Salem SA (2012) BOA: a novel optimization algorithm. In: IEEE 2012 International Conference on engineering and technology (ICET). pp 1–5. doi:  10.1109/ICEngTechnol.2012.6396156
  70. Salhi A, Fraga ES (2011) Nature-inspired optimisation approaches and the new plant propagation algorithm. In: The international conference on numerical analysis and optimization (ICeMATH ’11). Yogyakarta, IndonesiaGoogle Scholar
  71. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Comput 1:71–79. doi: 10.1504/IJBIC.2009.022775 CrossRefGoogle Scholar
  72. Simon D (2008) Biogeogr Based Optim. IEEE Trans Evolut Comput 12:702–713. doi: 10.1109/TEVC.2008.919004 CrossRefGoogle Scholar
  73. Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization overcontinuous spaces. Technical Report TR-95-012. vol 3. ICSI BerkeleyGoogle Scholar
  74. Sulaiman M, Salhi A (2015) A seed-based plant propagation algorithm: the feeding station model. Sci World J 2015:16. doi: 10.1155/2015/904364 Google Scholar
  75. Sulaiman M, Salhi A, Fraga ES, Mashwani WK, Rashidi MM (2016) The plant propagation algorithm: modifications and implementation. Sci Int 28Google Scholar
  76. Sulaiman M, Salhi A, Selamoglu BI, Kirikchi OB (2014) A plant propagation algorithm for constrained engineering optimisation problems. Math Probl Eng 2014:10. doi: 10.1155/2014/627416 CrossRefGoogle Scholar
  77. Sundareswaran K, Nayak PS, Sankar P, Kumar VV (2014) Inverter harmonic elimination through flower pollination enhanced genetic algorithm. Int J Adv Trends Comput Sci Eng 3:342–348Google Scholar
  78. Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl. doi: 10.1007/s00521-015-1923-y
  79. Wang R, Zhou Y (2014) Flower pollination algorithm with dimension by dimension improvement. Math Probl Eng. doi: 10.1155/2014/481791
  80. Wang S, Dai D, Hu H, Chen YL, Wu X (2011) RBF neural network parameters optimization based on paddy field algorithm. In: 2011 IEEE international conference on information and automation (ICIA). 6–8 June. pp 349–353. doi: 10.1109/ICINFA.2011.5949015
  81. Yang X-S (2012) Flower Pollination Algorithm for global optimization. In: Unconventional computation and natural computation. Springer. pp 240–249. doi: 10.1007/978-3-642-32894-7_27
  82. Yang X-S, Karamanoglu M, He X (2013) Multi-objective flower algorithm for optimization. Procedia Comput Sci 18:861–868. doi: 10.1016/j.procs.2013.05.251 CrossRefGoogle Scholar
  83. Yang X-S, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46:1222–1237. doi: 10.1080/0305215X.2013.832237 MathSciNetCrossRefGoogle Scholar
  84. Yang XS, Suash D (2009) Cuckoo search via levy flights. In: World Congress on nature & biologically inspired computing. NaBIC 2009. 9–11 Dec. pp 210–214. doi: 10.1109/NABIC.2009.5393690
  85. Yu B, Cui Z, Zhang G (2013) Artificial plant optimization algorithm with correlation branches. J Bioinform Intel Control 2:146–155. doi: 10.1166/jbic.2013.1039 CrossRefGoogle Scholar
  86. Zaharis ZD, Skeberis C, Xenos TD (2012) Improved antenna array adaptive beamforming with low side lobe level using a novel adaptive invasive weed optimization method. Prog Electromag Res 124:137–150. doi: 10.2528/PIER11120202 CrossRefGoogle Scholar
  87. Zhang H, Zhu Y, Chen H (2014) Root growth model: a novel approach to numerical function optimization and simulation of plant root system. Soft Comput 18:521–537. doi: 10.1007/s00500-013-1073-z CrossRefGoogle Scholar
  88. Zhao Z, Cui Z, Zeng J, Yue X (2011) Artificial plant optimization algorithm for constrained optimization problems. In: 2011 Second international conference on innovations in bio-inspired computing and applications (IBICA). 16–18 Dec.. pp 120–123. doi: 10.1109/IBICA.2011.34
  89. Zhou Y, Wang Y, Chen X, Zhang L, Wu K (2016) A Novel path planning algorithm based on plant growth mechanism. Soft Comput 1–11: doi: 10.1007/s00500-016-2045-x

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Computer EngineeringTunceli UniversityTunceliTurkey
  2. 2.Department of Software EngineeringFirat UniversityElazigTurkey

Personalised recommendations