Artificial Intelligence Review

, Volume 47, Issue 3, pp 341–366 | Cite as

A survey of graph-modification techniques for privacy-preserving on networks

  • Jordi Casas-Roma
  • Jordi Herrera-Joancomartí
  • Vicenç Torra
Article

Abstract

Recently, a huge amount of social networks have been made publicly available. In parallel, several definitions and methods have been proposed to protect users’ privacy when publicly releasing these data. Some of them were picked out from relational dataset anonymization techniques, which are riper than network anonymization techniques. In this paper we summarize privacy-preserving techniques, focusing on graph-modification methods which alter graph’s structure and release the entire anonymous network. These methods allow researchers and third-parties to apply all graph-mining processes on anonymous data, from local to global knowledge extraction.

Keywords

Privacy k-Anonymity Randomization Social networks Graphs 

References

  1. Assam R, Hassani M, Brysch M, Seidl T (2014) (\(k\),\(d\))-core anonymity: structural anonymization of massive networks. In: Proceedings of the 26th international conference on scientific and statistical database management (SSDBM ’14), vol 17, pp 1–17:12, Aalborg, Denmark, ACMGoogle Scholar
  2. Backstrom L, Dwork C, Kleinberg J (2007) Wherefore art thou r3579x? Anonymized social networks, hidden patterns, and structural steganography. In: International conference on World Wide Web (WWW), WWW ’07, ACM Press, New York, NY, USA, pp 181–190Google Scholar
  3. Bhagat S, Cormode G, Krishnamurthy B, Srivastava D (2009) Class-based graph anonymization for social network data. Proc VLDB Endow 2(1):766–777CrossRefGoogle Scholar
  4. Boldi P, Bonchi F, Gionis A, Tassa T (2012) Injecting uncertainty in graphs for identity obfuscation. Proc VLDB Endow 5(11):1376–1387CrossRefGoogle Scholar
  5. Bonchi F, Gionis A, Tassa T (2011) Identity obfuscation in graphs through the information theoretic lens. In: 2011 IEEE 27th international conference on data engineering, Washington, DC, USA, IEEE Computer Society, pp 924–935Google Scholar
  6. Bonchi F, Gionis A, Tassa T (2014) Identity obfuscation in graphs through the information theoretic lens. Inf Sci 275:232–256MathSciNetCrossRefGoogle Scholar
  7. Bredereck R, Froese V, Hartung S, Nichterlein A, Niedermeier R, Talmon N (2014) The complexity of degree anonymization by vertex addition. In: Proceedings of the 10th international conference on algorithmic aspects in information and management (AAIM ’14), Vancouver, BC, Canada, pp 44–55Google Scholar
  8. Campan A, Truta TM (2008) A clustering approach for data and structural anonymity in social networks. In: ACM SIGKDD international workshop on privacy, security, and trust (PinKDD), Las Vegas, Nevada, USA, ACM, pp 1–10Google Scholar
  9. Campan A, Truta TM (2009) Data and structural \(k\)-anonymity in social networks. In: Privacy, security, and trust in KDD (PinKDD), Springer, pp 33–54Google Scholar
  10. Campan A, Alufaisan Y, Truta TM (2015) Preserving communities in anonymized social networks. Trans Data Priv (TDP) 8(1):55–87Google Scholar
  11. Casas-Roma J (2014) Privacy-preserving on graphs using randomization and edge-relevance. In: Vicenç T (ed) International conference on modeling decisions for artificial intelligence (MDAI), Tokyo, Japan, Springer International Publishing, Switzerland, pp 204–216Google Scholar
  12. Casas-Roma J, Herrera-Joancomartí J, Torra V (2013) An algorithm for \(k\)-degree anonymity on large networks. In: IEEE international conference on advances on social networks analysis and mining (ASONAM), Niagara Falls, CA, IEEE Computer Society, pp 671–675Google Scholar
  13. Casas-Roma J, Herrera-Joancomartí J, Torra V (2016) \(k\)-Degree anonymity and edge selection: improving data utility in large networks. Knowledge and Information Systems (KAIS), pp 1–28. doi:10.1007/s10115-016-0947-7
  14. Chester S, Srivastava G (2011) Social network privacy for attribute disclosure attacks. In: 2011 international conference on advances in social networks analysis and mining (ASONAM), Kaohsiung, IEEE, pp 445–449Google Scholar
  15. Chester S, Kapron BM, Ramesh G, Srivastava G, Thomo A, Venkatesh S (2011) \(k\)-Anonymization of social networks by vertex addition. In: ADBIS 2011 research communications, Vienna, Austria, pp 107–116. http://www.CEUR-WS.org
  16. Chester S, Gaertner J, Stege U, Venkatesh S (2012) Anonymizing subsets of social networks with degree constrained subgraphs. In: IEEE international conference on advances on social networks analysis and mining (ASONAM), Washington, DC, USA, IEEE Computer Society, pp 418–422Google Scholar
  17. Chester S, Kapron BM, Ramesh G, Srivastava G, Thomo A, Venkatesh S (2013a) Why Waldo befriended the dummy? k-Anonymization of social networks with pseudo-nodes. Soc Netw Anal Min 3(3):381–399CrossRefGoogle Scholar
  18. Chester S, Kapron BM, Srivastava G, Venkatesh S (2013b) Complexity of social network anonymization. Soc Netw Anal Min 3(2):151–166CrossRefGoogle Scholar
  19. Cormode G, Srivastava D, Ting Y, Zhang Q (2010) Anonymizing bipartite graph data using safe groupings. Proc VLDB Endow 19(1):115–139Google Scholar
  20. D’Acquisto G, Domingo-Ferrer J, Kikiras P, Torra V, de Montjoye Y-A, Bourka A (2015) Privacy by design in big data: an overview of privacy enhancing technologies in the era of big data analytics, technical report. The European Union Agency for Network and Information Security (ENISA)Google Scholar
  21. Das S, Egecioglu Ö, El Abbadi A (2010) Anonymizing weighted social network graphs. In: IEEE international conference on data engineering (ICDE). IEEE Computer Society, pp 904–907Google Scholar
  22. De Capitani di Vimercati S, Foresti S, Livraga G, Samarati P (2012) Data privacy: definitions and techniques. Int J Uncertain Fuzziness Knowl Based Syst (IJUFKS) 20(6):793–818CrossRefMATHGoogle Scholar
  23. Dwork C (2006) Differential privacy. In Bugliesi M, Preneel P, Sassone V, Wegener I (eds) International conference on automata, languages and programming (ICALP), volume 4052 of Lecture notes in computer science. Heidelberg, Springer, Berlin, pp 1–12Google Scholar
  24. Feder T, Nabar SU, Terzi E (2008) Anonymizing graphs. CoRR abs/0810.5: 1–15Google Scholar
  25. Ferri F, Grifoni P, Guzzo T (2011) New forms of social and professional digital relationships: the case of Facebook. Soc Netw Anal Min (SNAM) 2(2):121–137CrossRefGoogle Scholar
  26. Ford R, Truta TM, Campan A (2009) \(P\)-Sensitive \(k\)-anonymity for social networks. In: Proceedings of the 2009 international conference on data mining (DMIN ’09). CSREA Press, Las Vegas, USA, pp 403–409Google Scholar
  27. Gulyás GG, Imre S (2013) Hiding information in social networks from de-anonymization attacks. In: Proceedings of the 14th joint IFIP TC6 and TC11 conference on communications and multimedia security (CMS 2013), Magdeburg, Germany, pp 173–184Google Scholar
  28. Gulyás GG, Imre S (2015) Using identity separation against de-anonymization of social networks. Trans Data Privacy (TDP) 8(2):113–140Google Scholar
  29. Hanhijärvi S, Garriga GC, Puolamäki K (2009) Randomization techniques for graphs. In: SIAM conference on data mining (SDM), Sparks, Nevada, USA, SIAM, pp 780–791Google Scholar
  30. Hartung S, Hoffmann C, Nichterlein A (2014) Improved upper and lower bound heuristics for degree anonymization in social networks. In: Proceedings of the 13th international symposium on experimental algorithms (SEA ’14), Springer, Copenhagen, 376–387Google Scholar
  31. Hartung S, Nichterlein A, Niedermeier R, Suchý O (2015) A refined complexity analysis of degree anonymization in graphs. Inf Comput 243:249–262. doi:10.1016/j.ic.2014.12.017
  32. Hay M, Miklau G, Jensen D, Weis P, Srivastava S (2007) Anonymizing social networks. Technical report No. 07-19, Computer Science Department, University of Massachusetts Amherst, UMass AmherstGoogle Scholar
  33. Hay M, Miklau G, Jensen D, Towsley D, Weis P (2008) Resisting structural re-identification in anonymized social networks. Proc VLDB Endow 1(1):102–114CrossRefGoogle Scholar
  34. Hay M, Liu K, Miklau G, Pei J, Terzi E (2011) Privacy-aware data management in information networks. In: International conference on management of data (SIGMOD), ACM Press, New York, USA, pp 1201–1204Google Scholar
  35. He X, Vaidya J, Shafiq B, Adam N, Atluri V (2009) Preserving privacy in social networks: a structure-aware approach. In: International conference on web intelligence and intelligent agent technology (WI-IAT ’09), IEEE, Milan, Italy, pp 647–654Google Scholar
  36. Hongwei W, Zhang J, Yang J, Wang B, Li S (2013) A clustering bipartite graph anonymous method for social networks. J Inf Comput Sci (JOICS) 10(18):6031–6040CrossRefGoogle Scholar
  37. Kapron BM, Srivastava G, Venkatesh S (2011) Social network anonymization via edge addition. In: IEEE international conference on advances on social networks analysis and mining (ASONAM), IEEE Computer Society, Kaohsiung, pp 155–162Google Scholar
  38. Lan L, Ju S, Jin H (2010) Anonymizing social network using bipartite graph. In: International conference on computational and information sciences (ICCIS). IEEE Computer Society, pp 993–996Google Scholar
  39. Li N, Li T, Venkatasubramanian S (2007) \(t\)-Closeness: privacy beyond \(k\)-anonymity and \(\ell \)-diversity. In: IEEE international conference on data engineering (ICDE), IEEE Computer Society, Istanbul, Turkey, pp 106–115Google Scholar
  40. Liu K, Terzi E (2008) Towards identity anonymization on graphs. In: ACM SIGMOD international conference on management of data, SIGMOD ’08, ACM Press, New York, NY, USA, pp 93–106Google Scholar
  41. Lu X, Song Y, Bressan S (2012) Fast identity anonymization on graphs. In: 23rd international conference on database and expert systems applications (DEXA ’12), Springer, Vienna, Austria, pp 281–295Google Scholar
  42. Ma T, Zhang Y, Cao J, Shen J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2015) KDVEM: a \(k\)-degree anonymity with vertex and edge modification algorithm. Computing 97(12):1165–1184MathSciNetCrossRefMATHGoogle Scholar
  43. Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007) \(\ell \)-diversity: privacy beyond \(k\)-anonymity. ACM Trans Knowl Discov Data (TKDD) 1(1):3:1–3:1Google Scholar
  44. Nagle F (2013) Privacy breach analysis in social networks. In: Özyer T, Erdem Z, Rokne J, Khoury S (eds) Mining social networks and security informatics. Lecture Notes in Social Networks, Springer, Netherlands, Dordrecht, pp 63–77Google Scholar
  45. Nagle F, Singh L, Gkoulalas-Divanis A (2012) EWNI: efficient anonymization of vulnerable individuals in social networks. In: Proceedings of the 16th Pacific-Asia conference on advances in knowledge discovery and data mining (PAKDD), Springer, Berlin, pp 359–370Google Scholar
  46. Narayanan A, Shmatikov V (2009) De-anonymizing social networks. In: IEEE symposium on security and privacy (SP), IEEE Computer Society, Washington, DC, USA, pp 173–187Google Scholar
  47. Nguyen HH, Imine A, Rusinowitch M (2014) A maximum variance approach for graph anonymization. In: The 7th international symposium on foundations and practice of security FPS’2014, Springer, Montréal, Canada, pp 1–16Google Scholar
  48. Nguyen HH, Imine A, Rusinowitch M (2015) Anonymizing social graphs via uncertainty semantics. In: Proceedings of the 10th ACM symposium on information, computer and communications security, ASIA CCS ’15, Singapore, pp 495–506Google Scholar
  49. Samarati P (2001) Protecting respondents’ identities in microdata release. IEEE Trans Knowl Data Eng (TKDE) 13(6):1010–1027CrossRefGoogle Scholar
  50. Sharad K, Danezis G (2014) An automated social graph de-anonymization technique. In: Proceedings of the 13th workshop on privacy in the electronic society—WPES ’14, ACM Press, New York, NY, USA, pp 47–58Google Scholar
  51. Sihag VK (2012) A clustering approach for structural \(k\)-anonymity in social networks using genetic algorithm. In: CUBE international information technology conference, ACM, pp 701–706Google Scholar
  52. Singh L, Schramm C (2010) Identifying similar neighborhood structures in private social networks. In: International conference on data mining workshops (ICDMW), IEEE, Sydney, NSW, pp 507–516Google Scholar
  53. Stokes K, Torra V (2011) On some clustering approaches for graphs. In: 2011 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 409–415Google Scholar
  54. Stokes K, Torra V (2012) Reidentification and \(k\)-anonymity: a model for disclosure risk in graphs. Soft Comput 16(10):1657–1670CrossRefMATHGoogle Scholar
  55. Sweeney L (2002) \(k\)-Anonymity: a model for protecting privacy. Int J Uncertainty Fuzziness Knowl Based Syst (IJUFKS) 10(5):557–570MathSciNetCrossRefMATHGoogle Scholar
  56. Tai C-H, Yu PS, Yang D-N, Chen M-S (2011) Privacy-preserving social network publication against friendship attacks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’11), ACM Press, New York, USA, pp 1262–1270Google Scholar
  57. Torra V (2010) Privacy in data mining. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, New York, pp 687–716 doi:10.1007/978-0-387-09823-4
  58. Tripathy BK, Panda GK (2010) A new approach to manage security against neighborhood attacks in social networks. In: IEEE international conference on advances on social networks analysis and mining (ASONAM), IEEE, Odense, Denmark, pp 264–269Google Scholar
  59. Vuokko N, Terzi E (2010) Reconstructing randomized social networks. In: SIAM conference on data mining (SDM), Columbus, Ohio, USA, pp 49–59Google Scholar
  60. Wu L, Ying X, Wu X (2010a) Reconstruction from randomized graph via low rank approximation. In: SIAM conference on data mining (SDM), SDM 2010, SIAM, Columbus, Ohio, USA, pp 60–71Google Scholar
  61. Wu X, Ying X, Liu K, Chen L (2010b) Managing and mining graph data, chapter A survey of privacy-preservation of graphs and social networks. Springer, US, Boston, MA, pp 421–453. doi:10.1007/978-1-4419-6045-0_14
  62. Ying X, Wu X (2008) Randomizing social networks: a spectrum preserving approach. In: SIAM conference on data mining (SDM), SIAM, Atlanta, Georgia, USA, pp 739–750Google Scholar
  63. Ying X, Wu X (2009a) On link privacy in randomizing social networks. In: Pacific-Asia conference on advances in knowledge discovery and data mining, PAKDD ’09, Springer, Berlin, pp 28–39Google Scholar
  64. Ying X, Wu X (2009b) Graph generation with prescribed feature constraints. In: SIAM conference on data mining (SDM), SDM 2009, SIAM, Sparks, Nevada, USA, pp 966–977Google Scholar
  65. Ying X, Pan K, Wu X, Guo L (2009) Comparisons of randomization and K-degree anonymization schemes for privacy preserving social network publishing. In: Workshop on social network mining and analysis, SNA-KDD ’09, ACM Press, New York, USA, pp 10:1–10:10Google Scholar
  66. Yuan M, Chen L, Yu PS, Ting Y (2013) Protecting sensitive labels in social network data anonymization. IEEE Trans Knowl Data Eng 25(3):633–647CrossRefGoogle Scholar
  67. Zheleva E, Getoor L (2007) Preserving the privacy of sensitive relationships in graph data. In: ACM SIGKDD international conference on privacy, security, and trust (PinKDD), vol 4890 of Lecture notes in computer science. Springer, Berlin, pp 153–171Google Scholar
  68. Zhou B, Pei J (2008) Preserving privacy in social networks against neighborhood attacks. In: IEEE international conference on data engineering (ICDE), IEEE Computer Society, Washington, DC, USA, pp 506–515Google Scholar
  69. Zhou B, Pei J (2011) The \(k\)-anonymity and \(\ell \)-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowl Inf Syst (KAIS) 28(1):47–77CrossRefGoogle Scholar
  70. Zhou B, Pei J, Luk WS (2008) A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM SIGKDD Explor Newsl 10(2):12–22CrossRefGoogle Scholar
  71. Zou L, Chen L, Tamer Özsu M (2009) K-Automorphism: a general framework for privacy preserving network publication. Proc VLDB Endow 2(1):946–957CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jordi Casas-Roma
    • 1
  • Jordi Herrera-Joancomartí
    • 2
  • Vicenç Torra
    • 3
  1. 1.Faculty of Computer Science, Multimedia and Telecommunications, Internet Interdisciplinary Institute (IN3)Universitat Oberta de CatalunyaBarcelonaSpain
  2. 2.Department of Information and Communications EngineeringUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.School of InformaticsUniversity of SkövdeSkövdeSweden

Personalised recommendations