Advertisement

Artificial Intelligence Review

, Volume 38, Issue 2, pp 129–147 | Cite as

Incremental K-clique clustering in dynamic social networks

  • Dongsheng Duan
  • Yuhua LiEmail author
  • Ruixuan Li
  • Zhengding Lu
Article

Abstract

Clustering entities into dense parts is an important issue in social network analysis. Real social networks usually evolve over time and it remains a problem to efficiently cluster dynamic social networks. In this paper, a dynamic social network is modeled as an initial graph with an infinite change stream, called change stream model, which naturally eliminates the parameter setting problem of snapshot graph model. Based on the change stream model, the incremental version of a well known k-clique clustering problem is studied and incremental k-clique clustering algorithms are proposed based on local DFS (depth first search) forest updating technique. It is theoretically proved that the proposed algorithms outperform corresponding static ones and incremental spectral clustering algorithm in terms of time complexity. The practical performances of our algorithms are extensively evaluated and compared with the baseline algorithms on ENRON and DBLP datasets. Experimental results show that incremental k-clique clustering algorithms are much more efficient than corresponding static ones, and have no accumulating errors that incremental spectral clustering algorithm has and can capture the evolving details of the clusters that snapshot graph model based algorithms miss.

Keywords

Incremental k-clique clustering Dynamic social network Change stream model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello J, Resende MGC, Sudarsky S (2002) Massive quasi-clique detection. In: LATIN, pp 598–612Google Scholar
  2. Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9(6): 1981–2014zbMATHGoogle Scholar
  3. Asur S, Parthasarathy S, Ucar D (2007) An event-based framework for characterizing the evolutionary behavior of interaction. In: KDD, pp 913–921Google Scholar
  4. Bron C, Kerbosch J (1973) Finding all cliques of an undirected graph. Commun ACM 16(9): 575–577zbMATHCrossRefGoogle Scholar
  5. Bron C, Kerbosch J (2009) A particle-and-density based evolutionary clustering method for dynamic networks. PVLDB 2(1): 622–633Google Scholar
  6. Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: KDD, pp 554–560Google Scholar
  7. Chi Y, Song X, Zhou D, Hino K, Tseng B (2007) Evolutionary spectral clustering by incorporating temporal smoothness. In: KDD, pp 153–162Google Scholar
  8. Cohn D, Chang H (2000) Learning to probabilistically identify authoritative documents. In: ICML, pp 167–174Google Scholar
  9. Derenyi I, Palla G, Vicsek T (2005) Clique percolation in random networks. Phys Rev Lett 94(16): 160–202CrossRefGoogle Scholar
  10. Du N, Wang B, Wu B, Wang Y (2008) Overlapping community detection in bipartite networks. In: WIC, pp 176–179Google Scholar
  11. Duan D, Li Y, Jin Y, Lu Z (2009) Community mining on dynamic weighted directed graphs. In: CNIKM, pp 11–18Google Scholar
  12. Etsuji Tomita A, Tanaka HT (2004) The worst-case time complexity for generating all maximal cliques and computational experiments. Theor Comput Sci 363: 28–42CrossRefGoogle Scholar
  13. Everett MG, Borgatti SP (1998) Analyzing clique overlap. Connections 21(1): 49–61Google Scholar
  14. Farkas IJ, Abel D, Palla G, Vicsek T (2007) Weighted network modules. New J Phys 9(6): 180CrossRefGoogle Scholar
  15. Frederickson GN (1983) Data structures for online updating of minimum spanning trees. In: SOTC, pp 252–257Google Scholar
  16. Girvan M, Newman M (2002) Community structure in social and biological networks. PNAS 99(12): 7821–7826MathSciNetzbMATHCrossRefGoogle Scholar
  17. Görke R, Hartmann T, Wagner D (2009) Dynamic graph clustering using minimum-cut trees. In: WADS, pp 339–350Google Scholar
  18. Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: ASONAM, pp 176–183Google Scholar
  19. Hofmann T (1999) Probabilistic latent semantic analysis. In: UAI, pp 289–296Google Scholar
  20. Lehmann S, Schwartz M, Hansen LK (2008) Biclique communities. Phys Rev E 78(1): 016–108MathSciNetCrossRefGoogle Scholar
  21. Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. TKDD 3(2): 1–31CrossRefGoogle Scholar
  22. Lin YR, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A (2009) Metafac: community discovery via relational hypergraph factorization. In: KDD, pp 527–536Google Scholar
  23. Newman MEJ (2006) Modularity and community structure in networks. In: PNAS, pp 8577–8582Google Scholar
  24. Ning H, Xu W, Chi Y, Gong Y, Huang T (2010) Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recogn 43(1): 113–127zbMATHCrossRefGoogle Scholar
  25. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043): 814–818CrossRefGoogle Scholar
  26. Palla G, Barabasi A, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136): 664–667CrossRefGoogle Scholar
  27. Saha B, Mitra P (2006) Dynamic algorithm for graph clustering using minimum cut tree. In: ICDM workshops, pp 667–671Google Scholar
  28. Shi J, Malik J (1997) Normalized cuts and image segmentation. In: CVPR’97, pp 731–737Google Scholar
  29. Sun J, Papadimitriou S, Yu P, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving graphs. In: KDD, pp 687–696Google Scholar
  30. Sun Y, Yu Y, Han J (2009) Ranking-based clustering of heterogeneous information networks with star network schema. In: KDD, pp 797–806Google Scholar
  31. Sun Y, Tang J, Han J, Gupta M, Zhao B (2010) Community evolution detection in dynamic heterogeneous information networks. In: MLG-KDD, pp 137–146Google Scholar
  32. Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. In: KDD, pp 677–685Google Scholar
  33. Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: KDD, pp 717–726Google Scholar
  34. von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4): 395–416MathSciNetCrossRefGoogle Scholar
  35. Yang T, Chi Y, Zhu S, Gong Y, Jin R (2009) A bayesian approach toward finding communities and their evolutions in dynamic social networks. In: SDM, pp 990–1001Google Scholar
  36. Yang T, Chi Y, Zhu S, Gong Y, Jin R (2010) Directed network community detection: a popularity and productivity link model. In: SDM, pp 742–753Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Dongsheng Duan
    • 1
  • Yuhua Li
    • 1
    Email author
  • Ruixuan Li
    • 1
  • Zhengding Lu
    • 1
  1. 1.Intelligent and Distributed Computing Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations