Artificial Intelligence Review

, Volume 33, Issue 3, pp 261–274 | Cite as

Review of brain MRI image segmentation methods

  • M. A. Balafar
  • A. R. Ramli
  • M. I. Saripan
  • S. Mashohor


Brain image segmentation is one of the most important parts of clinical diagnostic tools. Brain images mostly contain noise, inhomogeneity and sometimes deviation. Therefore, accurate segmentation of brain images is a very difficult task. However, the process of accurate segmentation of these images is very important and crucial for a correct diagnosis by clinical tools. We presented a review of the methods used in brain segmentation. The review covers imaging modalities, magnetic resonance imaging and methods for noise reduction, inhomogeneity correction and segmentation. We conclude with a discussion on the trend of future research in brain segmentation.


Brain MRI Segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton ST, Mukherjee DP (2000) Scale space classification using area morphology. IEEE Trans Image Process 9(4): 623–635CrossRefGoogle Scholar
  2. Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118: 269–277zbMATHCrossRefMathSciNetGoogle Scholar
  3. An S, An D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6: 721–741CrossRefGoogle Scholar
  4. Andersen AH et al (2002) Automated segmentation of multispectral brain MR images. J Neurosci Methods 122(1): 13–23CrossRefGoogle Scholar
  5. Ardizzone E, Pirrone R, Gambino O (2005) Exponential entropy driven HUM on knee MR images. In: 27th annual international conference of the engineering in medicine and biology society, pp 1769–1772Google Scholar
  6. Balafar MA (2008) Medical image segmentation using fuzzy C-mean (FCM) and dominant grey levels of image. In: Visual information engineering conferenceGoogle Scholar
  7. Balafar M et al (2008a) Medical image segmentation using fuzzy C-mean (FCM), Bayesian method and user interaction. In: International conference on wavelet analysis and pattern recognitionGoogle Scholar
  8. Balafar MA et al (2008b) New multi-scale medical image segmentation based on fuzzy c-mean (FCM). In: IEEE conference on innovative technologies in intelligent systems and industrial applications, pp 66–70Google Scholar
  9. Balafar MA et al (2008c) Medical image segmentation using anisotropic filter, user interaction and fuzzy C-mean (FCM). In: Advanced intelligent computing theories and applications with aspects of contemporary intelligent computing techniques: 4th international conference on intelligent computing, Springer, p 169Google Scholar
  10. Balafar MA et al (2008d) Medical image segmentation using fuzzy C-mean (FCM), learning vector quantization (LVQ) and user interaction. In: Advanced intelligent computing theories and applications with aspects of contemporary intelligent computing techniques: 4th international conference on intelligent computing, Springer, p 177Google Scholar
  11. Balafar MA et al (2008e) MRI segmentation of medical images using FCM with initialized class centers via genetic algorithm. In: International symposium on information technologyGoogle Scholar
  12. Buades A, Coll B, Morel J (2005) A non-local algorithm for image denoising. In: IEEE computer society conference on computer vision and pattern recognition, Citeseer, pp 60–65Google Scholar
  13. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1): 61–79zbMATHCrossRefGoogle Scholar
  14. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2): 266–277zbMATHCrossRefGoogle Scholar
  15. Chang PL, Teng WG (2007) Exploiting the self-organizing map for medical image segmentation. In: Twentieth IEEE international symposium on computer-based medical systems, pp 281–288Google Scholar
  16. Clark MC et al (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17(2): 187–201CrossRefGoogle Scholar
  17. Dave RN (1991) Characterization and detection of noise in clustering. Pattern Recogn Lett 12(11): 657–664CrossRefGoogle Scholar
  18. Diplaros A, Vlassis N, Gevers T (2007) A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans Neural Netw 18(3): 798–808CrossRefGoogle Scholar
  19. Dokur Z (2008) A unified framework for image compression and segmentation by using an incremental neural network. Expert Syst Appl 34(1): 611–619CrossRefGoogle Scholar
  20. Edelstein WA et al (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3(4): 604–618CrossRefGoogle Scholar
  21. Gallea R et al (2008) Noise filtering using edge-driven adaptive anisotropic diffusion. In: 21st IEEE international symposium on computer-based medical systems, pp 29–34Google Scholar
  22. Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek J (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3: 672–682CrossRefGoogle Scholar
  23. Han X, Fischl B (2007) Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Trans Med Imaging 26(4): 479–486CrossRefGoogle Scholar
  24. Kaus MR et al (1999) Segmentation of meningiomas and low grade gliomas in MRI. Lecture Notes in Computer Science, pp 1–10Google Scholar
  25. Kim HS et al (2008) Speckle reducing anisotropic diffusion based on directions of gradient. In: Proceedings of the 2008 international conference on advanced language processing and web information technology, pp 198–203Google Scholar
  26. Li SZ (1994) Markov random field models in computer vision. Lect Notes Comput Sci 801: 361–370CrossRefGoogle Scholar
  27. Li N, Liu M, Li Y (2007) Image segmentation algorithm using watershed transform and level set method. In: IEEE international conference on acoustics, speech and signal processing, pp 613–616Google Scholar
  28. Likar B, Viergever MA, Pernus F (2001) Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging 20(12): 1398–1410CrossRefGoogle Scholar
  29. Lions PL, Morel JM, Coll T (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29(1): 182–193zbMATHCrossRefMathSciNetGoogle Scholar
  30. Liu S, Li J (2006) Automatic medical image segmentation using gradient and intensity combined level set method. In: The 28th IEEE EMBS annual international conference, pp 3118–3121Google Scholar
  31. Mäkelä T et al (2002) A review of cardiac image registration methods. IEEE Trans Med Imaging 21(9): 1011–1021CrossRefGoogle Scholar
  32. Matsuzawa J et al (2001) Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cereb Cortex 11(4): 335CrossRefGoogle Scholar
  33. Nowak RD (1999) Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process 8(10): 1408–1419CrossRefGoogle Scholar
  34. Paragios N, Deriche R (1999) Coupled geodesic active regions for image segmentation. Rapport De Recherche-Institut National De Recherche En Informatique Et En AutomatiqueGoogle Scholar
  35. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7): 629–639CrossRefGoogle Scholar
  36. Pohle R, Toennies KD (2001) Segmentation of medical images using adaptive region growing. In: Proceedings of SPIE medical imaging, pp 1337–1346Google Scholar
  37. Ren J, He M (2007) A level set method for image segmentation by integrating channel anisotropic diffusion information. In: 2nd IEEE conference on industrial electronics and applications, pp 2554–2557Google Scholar
  38. Robb RA (2000) Biomedical imaging, visualization, and analysis, edited by Wiley-Liss, USAGoogle Scholar
  39. Rohlfing T et al (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4): 1428–1442CrossRefGoogle Scholar
  40. Rousson M, Brox T, Deriche R (2003) Active unsupervised texture segmentation on a diffusion based feature space. In: IEEE computer society conference on computer vision and pattern recognition, pp 699–704Google Scholar
  41. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4): 1591–1595zbMATHCrossRefMathSciNetGoogle Scholar
  42. Sijbers J et al (1998) Estimation of the noise in magnitude MR images. Magn Reson Imaging 16(1): 87–90CrossRefGoogle Scholar
  43. Smolka B (2008) Modified biased anisotropic diffusion processing of noisy color images. In: 9th international conference on signal processing, pp 777–780Google Scholar
  44. Song T et al (2007) A modified probabilistic neural network for partial volume segmentation in brain MR image. IEEE Trans Neural Netw 18(5): 1424–1432CrossRefGoogle Scholar
  45. Suzuki H, Toriwaki J (1991) Automatic segmentation of head MRI images by knowledge guided thresholding. Comput Med Imaging Graph 15(4): 233CrossRefGoogle Scholar
  46. Tian D, Fan L (2007) A brain MR images segmentation method based on SOM neural network. In: The 1st international conference on bioinformatics and biomedical engineering, pp 686–689Google Scholar
  47. Tisdall D, Atkins MS (2005) MRI denoising via phase error estimation. In: Proceedings of SPIE pp 646–654Google Scholar
  48. Tolias YA, Panas SM (1998) On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. IEEE Signal Process Lett 5(10): 245–247CrossRefGoogle Scholar
  49. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6): 583–598CrossRefGoogle Scholar
  50. Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3): 405CrossRefGoogle Scholar
  51. Wang J (2007) Discriminative Gaussian mixtures for interactive image segmentation. In: IEEE international conference on acoustics, speech and signal processing, pp 386–396Google Scholar
  52. Warfield SK et al (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1): 43–55CrossRefGoogle Scholar
  53. Yoon SW et al (2004) Medical endoscopic image segmentation using snakes. IEICE Trans Inf Syst 87(3): 785–789Google Scholar
  54. You YL et al (1996) Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans Image Process 5(11): 1539–1553CrossRefGoogle Scholar
  55. Zhang DQ, Chen SC (2004) A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif Intell Med 32(1): 37–50CrossRefGoogle Scholar
  56. Zhang Y et al (2007) A novel medical image segmentation method using dynamic programming. In: International conference on medical information visualisation-bioMedical visualisation, pp 69–74Google Scholar
  57. Zhao HK et al (1996) A variational level set approach to multiphase motion. J Comput Phys 127(1): 179–195zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. A. Balafar
    • 1
  • A. R. Ramli
    • 1
  • M. I. Saripan
    • 1
  • S. Mashohor
    • 1
  1. 1.Department of Computer & Communication Systems, Faculty of EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations