Artificial Intelligence Review

, Volume 26, Issue 4, pp 269–289

Expressiveness of temporal query languages: on the modelling of intervals, interval relationships and states

Article
  • 42 Downloads

Abstract

Storing and retrieving time-related information are important, or even critical, tasks on many areas of computer science (CS) and in particular for artificial intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: Templog in the context of temporal deductive databases, and TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts.

Keywords

Temporal deductive databases Temporal relational databases Knowledge representation Temporal logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi M and Manna Z (1989). Temporal logic programming. J Symb Comput 8(3): 277–295 MATHMathSciNetCrossRefGoogle Scholar
  2. Allen JF (1983). Maintaining knowledge about temporal intervals. Commun ACM 26(11): 832–843 MATHCrossRefGoogle Scholar
  3. Allen JF (1984). Towards a general theory of action and time. Artif Intell 23(2): 123–154 MATHCrossRefGoogle Scholar
  4. Artale A, Fisher M, Theodoludis B (eds) (2002) TIME ’02: Proceedings of the 9th International Workshop on Temporal Representation and Reasoning. IEEE PressGoogle Scholar
  5. Baudinet M (1989) Temporal logic programming is complete and expressive. In: POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, pp 267–280Google Scholar
  6. Baudinet M (1992) A simple proof of completeness of temporal logic programming. In: del Cerro LF, Penttonen M (eds) Intensional logics for programming. Oxford University Press, pp 50–83Google Scholar
  7. Baudinet M (1995). On the expressiveness of temporal logic programming. Inf Comput 117(2): 157–180 MATHCrossRefMathSciNetGoogle Scholar
  8. Baudinet M, Niezette M, Wolper P (1991) On the representation of infinite temporal data and queries. In: PODS ’91: Proceedings of the 10th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM Press, pp 280–290Google Scholar
  9. Baudinet M, Chomiki J, Wolper P (1993) Temporal deductive databases. In: Tansel A, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass R (eds) Temporal data bases: theory, design and implementation. The Benjamin Cummings Pub. Co.Google Scholar
  10. Bettini C, Montanari A (eds) (2001) TIME ’01: Proceedings of the 8th International Workshop on Temporal Representation and Reasoning. IEEE PressGoogle Scholar
  11. Bettini C, Dyreson CE, Evans WS, Snodgrass RT, Wang XS (1998a) A glossary of time granularity concepts. In: Etzioni O, Jajodia S, Sripada S (eds) Temporal databases: research and practice. Springer-VerlagGoogle Scholar
  12. Bettini C, Wang XS, Jajodia S (1998b) Temporal semantic assumptions and their use in databases. IEEE Trans Knowl Data Eng 10(2)Google Scholar
  13. Bohlen M, Chomicki J, Snodgrass RT, Toman D (1996) Querying TSQL2 databases with temporal logic. In: EDBT ’96: Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology, LNCS, vol 1057. pp 325–341Google Scholar
  14. Cervesato I, Franceschet M and Montanari A (2000). A guided tour through some extensions of the Event Calculus. Comput Intell 16(2): 307–347 CrossRefMathSciNetGoogle Scholar
  15. Chittaro L and Montanari A (1996). Efficient temporal reasoning in the cached Event Calculus. Comput Intell 12(3): 359–382 CrossRefMathSciNetGoogle Scholar
  16. Chomicki J (1990a) Functional deductive databases: query processing in the presence of limited functional symbols. PhD thesis, Rutgers University, New Brunswick, New JerseyGoogle Scholar
  17. Chomicki J (1990b) Polynomial time query processing in temporal deductive databases. In: PODS ’90: Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM Press, pp 379–391Google Scholar
  18. Chomicki J (1994) Temporal query languages: a survey. In: ICTL’94: Proceedings of the 1st International Conference on Temporal Logic, LNCS, vol 827. Springer-Verlag, pp 506–534Google Scholar
  19. Clifford J, Dyreson CE, Isakowitz T, Jensen CS and Snodgrass RT (1997). On the semantics of now in databases. ACM Trans Database Syst 22(2): 171–214 CrossRefGoogle Scholar
  20. Cobo ML, Augusto JC (1999) EMTPL: a programming language for temporal deductive data bases. In: SCCC ’99: Proceedings of the 19th International Conference of the Chilean Computer Science Society. IEEE Computer Society, pp 170–178Google Scholar
  21. Dowty D (1986). The effects of the aspectual class on the temporal structure of discourse. Linguist Philos 9(1): 37–61 Google Scholar
  22. Dyreson CE and Snodgrass RT (1998). Supporting valid-time indeterminacy. ACM Transac Database Syst 23(1): 1–57 CrossRefGoogle Scholar
  23. Dyreson C, Grandi F, Käfer W, Kline N, Lorentzos N, Mitsopoulos Y, Montanari A, Nonen D, Peressi E, Pernici B, Roddick JF, Sarda NL, Scalas MR, Segev A, Snodgrass RT, Soo MD, Tansel A, Tiberio P and Wiederhold G (1994). A consensus glossary of temporal database concepts. SIGMOD Rec 23(1): 52–64 CrossRefGoogle Scholar
  24. Etzioni O, Jajodia S, Sripada S (eds) (1998) Temporal databases: research and practice. Springer-VerlagGoogle Scholar
  25. Freksa C (1992). Temporal reasoning based on semi-intervals. Artif Intell 54(1): 199–227 CrossRefMathSciNetGoogle Scholar
  26. Gallaire H, Minker J and Nicolas JM (1984). Logic and databases: a deductive approach. ACM Comput Surv 16(2): 153–185 MATHCrossRefMathSciNetGoogle Scholar
  27. Galton A (2005) Eventualities. In: Fisher M, Gabbay D, Vila L (eds) Handbook of temporal reasoning in artificial intelligence. ElsevierGoogle Scholar
  28. Galton A, Augusto JC (2002) Two approaches to event definition. In: Hameurlain A, Cicchetti R, Traunmüller R (eds) DEXA ’02: Proceedings of 13th International Conference on Database and Expert Systems Applications. Springer-Verlag, pp 547–556Google Scholar
  29. Gómez RS, Augusto JC (2000) Un Análisis comparativo de Lenguajes de Consulta para Bases de Datos Temporales. In: Proceedings del VI Congreso Argentino de Ciencias de la Computación. CACIC2000, pp 111–122Google Scholar
  30. Gómez RS, Augusto JC (2004) Durative event composition in active databases. In: ICEIS ’04: Proceedings of the 6th International Conference on Enterprise Information Systems. INSTICC Press, vol 1. pp 306–311Google Scholar
  31. Goodwin S, Trudel A (eds) (2000) TIME ’00: Proceedings of the 7th International Workshop on Temporal Representation and Reasoning. IEEE PressGoogle Scholar
  32. Grant J and Minker J (1992). The impact of logic programming on databases. Commun ACM 35(3): 66–81 CrossRefMathSciNetGoogle Scholar
  33. Hamblin CL (1972) Instants and intervals. In: Fraser J, Haber F, Muller G (eds) The study of time. Springer-Verlag, pp 324–328Google Scholar
  34. Jensen CS and Snodgrass RT (1996). Semantics of time-varying information. Inf Syst 21(4): 311–352 CrossRefGoogle Scholar
  35. Kowalski R (1992). Database updates in the Event Calculus. J Logic Program 12: 121–146 CrossRefGoogle Scholar
  36. Kowalski R and Sergot M (1986). A logic-based calculus of events. New Generat Comput 4: 67–95 Google Scholar
  37. Lloyd JW (1987) Foundations of logic programming, 2nd edn. Springer-VerlagGoogle Scholar
  38. McKenzie LE and Snodgrass RT (1991). Evaluation of relational algebras incorporating the time dimension in databases. ACM Comput Surv 23(4): 501–543 CrossRefGoogle Scholar
  39. Morris R, Khatib L (eds) (1999) TIME ’99: Proceedings of the 6th International Workshop on Temporal Representation and Reasoning. IEEE PressGoogle Scholar
  40. Revesz P (1993). A closed-form evaluation for Datalog queries with integer (gap)-order constraints. Theor Comput Sci 116(1): 117–149 MATHCrossRefMathSciNetGoogle Scholar
  41. Reynolds M, Sattar A (eds) (2003) TIME ’03: Proceedings of the 10th International Workshop on Temporal Representation and Reasoning. IEEE PressGoogle Scholar
  42. Snodgrass RT (1987). The temporal query languaje TQuel. ACM Trans Database Syst 12(2): 247–298 CrossRefGoogle Scholar
  43. Snodgrass RT (ed) (1995) The TSQL2 temporal query language. Kluwer Academic PublishersGoogle Scholar
  44. Snodgrass RT and Ahn I (1986). Temporal databases. Computer 19(9): 35–42 CrossRefGoogle Scholar
  45. Stonebraker M, Wong E, Kreps P and Held G (1976). The design and implementation of INGRES. ACM Trans Database Syst 1(3): 189–222 CrossRefGoogle Scholar
  46. Tansel A, Tin E (1998) Expressive power of temporal relational query languages and temporal completeness. In: Etzioni O, Jajodia S, Sripada S (eds) Temporal databases: research And Practice. Springer-VerlagGoogle Scholar
  47. Tansel A, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass RT (1993) Temporal data bases (Theory, design and implementation). The Benjamin Cummings Pub. Co.Google Scholar
  48. Terenziani P (2000) Is point-based semantics always adequate for temporal databases? In: TIME ’00: Proceedings of the 7th International Workshop on Temporal Representation and Reasoning. IEEE Press, pp 191–199Google Scholar
  49. Toman D (1996) Point vs. interval-based query languages for temporal databases. In: PODS ’96: Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM, pp 58–67Google Scholar
  50. Toman D, Niwinski D (1996) First-order queries over temporal databases inexpressible in temporal logic. In: EDBT ’96: Proceedings of the 5th International Conference on Extending Database Technology. Springer-Verlag, pp 307–324Google Scholar
  51. Toman D, Chomicki J, Rogers D (1994) Datalog with integer periodicity constraints. In: Proceedings of the 1994 International Symposium on Logic Programming. MIT Press, pp 189–203Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Computing LaboratoryUniversity of KentCanterbury, KentUK
  2. 2.School of Computing and MathematicsUniversity of Ulster at JordanstownNewtownabbey, Co. AntrimUK

Personalised recommendations