Advertisement

Artificial Intelligence Review

, Volume 24, Issue 2, pp 109–143 | Cite as

Explanation in Case-Based Reasoning–Perspectives and Goals

  • Frode Sørmo
  • Jörg Cassens
  • Agnar Aamodt
Article

Abstract

We present an overview of different theories of explanation from the philosophy and cognitive science communities. Based on these theories, as well as models of explanation from the knowledge-based systems area, we present a framework for explanation in case-based reasoning (CBR) based on explanation goals. We propose ways that the goals of the user and system designer should be taken into account when deciding what is a good explanation for a given CBR system. Some general types of goals relevant to many CBR systems are identified, and used to survey existing methods of explanation in CBR. Finally, we identify some future challenges.

Keywords

case-based reasoning explanation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamodt, A. (1991). A Knowledge-Intensive, Integrated Approach to Problem Solving and Sustained Learning. Ph.D. thesis, Norwegian Institute of Technology, Department of Computer Science, Trondheim (http://www.idi.ntnu.no/grupper/su/publ/phd/aamodt-thesis.pdf).
  2. Aamodt, A. (2004). Knowledge-Intensive Case-Based Reasoning in CREEK. In Funk and González–Calero, (eds.) 1–15, Springer: Berlin Heidelberg.Google Scholar
  3. Aamodt, A., Plaza, E. 1994Case-based Reasoning; Foundational Issues, Methodological Variations and System ApproachesAI Communications73959Google Scholar
  4. Achinstein, P. 1983The Nature of ExplanationOxford University PressOxfordGoogle Scholar
  5. Aleven, V., Ashley, K. D. (1997). Teaching Case-Based Argumentation through a Model and Examples: Empirical Evaluation of an Intelligent Learning Environment. In du Boulay, B. and Mizoguchi, R. (eds.) Artificial Intelligence in Education, Proceedings of AI-ED 97 World Conference. 87–94. IOS Press. Amsterdam.Google Scholar
  6. Aleven, V., Koedinger, K.R. 2002An Effective Metacognitive Strategy: Learning by Doing and Explaining With a Computer Based Cognitive TutorCognitive Science26147179CrossRefGoogle Scholar
  7. Ashley, K.D., Bridge, D.G. (eds.) (2003). Case-Based Reasoning Research and Development: Proceedings ICCBR 2003, No. 2689 in LNAI. Springer Berlin Heidelberg.Google Scholar
  8. Bello-Thomás, J. J., González-Calero, P., Díaz-Agudo, B. (2004). JColibri: an Object-Oriented Framework for Building CBR Systems. In Funk and González–Calero (eds.) 32–46, Springer Berlin Heidelberg.Google Scholar
  9. Bergmann, R. and Pews, G., Wilke, W. (1993). Explanation-Based Similarity: A Unifying Approach for Integrating Domain Knowledge into Case-Based Reasoning for Diagnosis and Planning Tasks. In Topics in Case-Based Reasoning: Proceedings EWCBR 1993. 182–196.Google Scholar
  10. Brewer, W.F., Chinn, C.A., Samarapungavan, A. 1998Explanations in Scientists and ChildrenMinds and Machines8119136CrossRefGoogle Scholar
  11. Bromberger, S. 1965An Approach to ExplanationButler, R.J. eds. Analytical PhilosophyBasil BlackwellOxford72105Google Scholar
  12. Bromberger, S. 1966Why QuestionsColodny, R.G. eds. Mind and CosmosPittsburgh University PressPittsburgh86111Google Scholar
  13. Brüninghaus S., Ashley K.D. (2003) Combining Case-Based and Model-Based Reasoning for Predicting the Outcome of Legal Cases. In: Ashley., Bridge. (ed). Springer, Berlin Heidelberg, pp. 65–79.Google Scholar
  14. Chandrasekaran, B., Tanner, M.C., Josephson, J.R. 1989Explaining Control Strategies in Problem SolvingIEEE Expert.4915CrossRefGoogle Scholar
  15. Cheetham, W., Price, J. (2004) Measures of Solution Accuracy in Case-Based Reasoning In Funk., González–Calero (eds.) 106–118. Springer: Berlin Heidelberg.Google Scholar
  16. Clancey, W.J. 1983The Epistemology of a Rule-Based Expert System: A Framework for ExplanationArtificial Intelligence20215251CrossRefGoogle Scholar
  17. Cunningham P., Doyle D., Loughrey J. (2003). An Evaluation of the Usefulness of Case-Based Reasoning Explanation. In: Ashley., Bridge. (ed). Springer, Berlin Heidelberg, pp. 122–130.Google Scholar
  18. Díaz-Agudo, B., González-Calero, P. (2000) An Architecture for Knowledge-Intensive CBR systems In Advances in Case-Based Reasoning: Proceedings EWCBR 2000 Springer: Berlin.Google Scholar
  19. Doyle, D., Cunningham, P. Bridge, D., Rahman, Y. (2004) Explanation Oriented Retrieval In Funk., González–Calero (eds.), 157–168. Springer: Berlin Heidelberg.Google Scholar
  20. Faltings, B. 1997Probabilistic Indexing for Case-Based PredictionLeake, D.B.Plaza, E. eds. Case-Based Reasoning Research and Development: Proceedings ICCBR 1997, vol. 1266 of Lecture Notes in Artificial IntelligenceSpringerBerlin Heidelberg611622Google Scholar
  21. Ford K.M., Cañas A.J., Coffey J. (1993). Participatory Explanation. In Proceedings FLAIRS. 111–115.Google Scholar
  22. Friedman, M. 1974Explanation and Scientific UnderstandingJournal of Philosophy71519Google Scholar
  23. Funk P., González–Calero P.A.G. ed. (2004) Advances in Case-Based Reasoning: Proceedings ECCBR 2004 No. 3155 in LNAI. Springer, Berlin Heidelberg.Google Scholar
  24. Gregor, S., Benbasat, I. 1999Explanations From Intelligent Systems Theoretical Foundations and Implications for PracticeMIS Quarterly23497530Google Scholar
  25. Hanna, J. (1982). Probabilistic Explanation and Probabilistic Causality Philosophy Socity American, vol. 2.Google Scholar
  26. Harman, G. 1965The Inference to the Best ExplanationThe Philosophical Review748895Google Scholar
  27. Hempel, C.G. 1965Aspects of Scientific ExplanationFree PressNew YorkGoogle Scholar
  28. Hempel, C.G., Oppenheim, P. 1948Studies in the Logic of ExplanationPhilosophy of Science15135175CrossRefGoogle Scholar
  29. Herlocker, J. L., Konstan, J. A., Riedl, J. (2000) Explaining Collaborative Filtering Recommendations. In Proceedings of the ACM 2000 Conference on Computer Supported Cooperative Work 241–250.Google Scholar
  30. Josephson, J.R.Josephson, S.G. eds. 1994Abductive Inference Computation: Philosophy, TechnologyCambridge University PressNew YorkGoogle Scholar
  31. Kass, A., Leake, D., Owens, C. 1986SWALE: A Program that ExplainsSchank, R.C. eds. Explanation Patterns Understanding Mechanically and CreativelyLawrence Erlbaum AssociatesHillsdale, NJ232254Google Scholar
  32. Keil, F.C.Wilson, R.A. eds. 2000Explanation and CognitionBradford BooksBoston, MAGoogle Scholar
  33. Kitcher, P. 1976Explanation, Conjunction, and UnificationJournal of Philosophy7320712Google Scholar
  34. Kolodner, J.L. 1993Case-Based ReasoningMorgan Kaufmann PublishersSan MateoGoogle Scholar
  35. Kolodner, J.L. 1997Educational Implications of Analogy: A View from Case-Based ReasoningAmerican Psychologist525766CrossRefPubMedGoogle Scholar
  36. Kolodner, J.L., Leake, D.B. 1996A Tutorial Introduction to Case-Based ReasoningLeake, D.B. eds. Case-Based Reasoning: Experiences, Lessons, Future DirectionsMIT Press., AAAI PressCambridge, MAGoogle Scholar
  37. Koton, P. (1988) Reasoning about Evidence in Causal Explanations. In Proceedings of AAAI-88 vol. 1 256–261. AAAI Press/MIT Press: Cambridge, MA.Google Scholar
  38. Lalljee, M., Watson, M., White, P. 1983Attribution Theory: Social and Functional Extensions In The Organization of ExplanationsBlackwellOxfordGoogle Scholar
  39. Leake, D.B. 1992Evaluating Explanations: A Content TheoryLawrence Erlbaum AssociatesNew YorkGoogle Scholar
  40. Leake, D.B. 1995aAbduction, Experience, and Goals: A Model of Everyday Abductive ExplanationJournal of Experimental and Theoretical Artificial Intelligence7407428Google Scholar
  41. Leake, D.B. eds. 1995bGoal-Based Explanation Evaluation In Goal-Driven LearningMIT PressCambridge251285Google Scholar
  42. Leake, D. B., Birnbaum, L. Hammond, K. Marlow, C., Yang, H (2001a) An Integrated Interface for Proactive, Experience-Based Design Support In Proceedings of the 6th International Conference on Intelligent User Interfaces. Santa Fe. 101–108.Google Scholar
  43. Leake, D. B., Maguitman, A., Cañas, A. (2001b) Assessing Conceptual Similarity to Support Concept Mapping In Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference AAAI Press, Menlo Park. 172–186.Google Scholar
  44. Lenat, D., Feigenbaum, E. (1987) On the Thresholds of Knowledge In Proceedings IJCAI 1987 1173–1182.Google Scholar
  45. Majchrzak, A., Gasser, L. 1991On using Artificial Intelligence to Integrate the Design of Organizational and ProcessChange in US Manufacturing AI and Society5321338Google Scholar
  46. Mao, J.-Y., Benbasat, I. 2000The Use of Explanations in Knowledge-Based Systems: Cognitive Perspectives and a Process-Tracing AnalysisJournal of Managment Information Systems17153179Google Scholar
  47. Massie, S., Craw, S., Wiratunga, N. (2004) Visualisation of Case-Based Reasoning for Explanation In Gervás, P., Gupta, K. M. (eds.) Proceedings of the ECCBR 2004 Workshops. Madrid. 135–144.Google Scholar
  48. McArdle, G. P., Wilson, D. C. (2003) Visualising Case-Base Usage In McGinty, L. (ed.) Workshop Proceedings ICCBR 2003 105–114, Trondheim.Google Scholar
  49. McDermott, D. 1987A Critique of Pure ReasonJournal of Computational Intelligence3151160Google Scholar
  50. McSherry, D. (1998) Strategic Induction of Decision Trees In Milne, R., Bramer, M. A. (eds). 15–26. Proceedings of ES98Google Scholar
  51. McSherry, D. 2001Interactive Case-Based Reasoning in Sequential DiagnosisApplied Intelligence146576CrossRefGoogle Scholar
  52. McSherry, D. (2003) Explanation in Case-Based Reasoning: an Evidential Approach In Lees, B. (ed.) Proceedings of the 8th UK Workshop on Case-Based Reasoning 47–55. Cambridge.Google Scholar
  53. McSherry, D. (2004) Explaining the Pros and Cons of Conclusions in CBR Funk, P., González–Calero, P. (eds.), Proceeding of ECCBR 2004, 317–330. Springer: Berlin Heidelberg.Google Scholar
  54. McSherry, D. (2005) Explanation in Recommender Systems Artificial Intelligence Review (This issue)Google Scholar
  55. Murdock, J., Aha, D., Breslow, L. (2003) Assessing Elaborated Hypotheses: An Interpretive Case-Based Reasoning Approach In Ashley., Bridge (eds.) 332–346 Springer: Berlin HeidelbergGoogle Scholar
  56. Nugent, C., Cunningham, P. (2005) A Case-Based Explanation System for Black-Box Systems Artificial Intelligence Review (This issue)Google Scholar
  57. Ong, L., Shepard, B., Tong, L., Seow-Choen, F., Ho, Y., Tong, L., Ho, Y., Tan, K. 1997The Colorectal Cancer Recurrence Support (CARES) SystemArtificial Intelligence in Medicine11175188CrossRefPubMedGoogle Scholar
  58. Plaza, E., Armengol, E., Ontañón, S. (2005). The Explanatory Power of Symbolic Similarity in Case-Based Reasoning Artificial Intelligence Review (This issue)Google Scholar
  59. Reilly, J., McCarthy, K. McGinty, L., Smyth, B. (2005) Explaining Compound Critiques Artificial Intelligence Review (This issue)Google Scholar
  60. Richter, M. M. (1995). The Knowledge Contained in Similarity Measures Invited Talk at the First International Conference on Case-Based Reasoning, ICCBR’95, Sesimbra, PortugalGoogle Scholar
  61. Roth-Berghofer, T. R. (2004) Explanations and Case-Based Reasoning: Foundational Issues, In Funk., González–Calero (eds.), 389–403. Springer: Berlin HeidelbergGoogle Scholar
  62. Roth-Berghofer, T. R., Cassens, J. (2005) Mapping Goals and Kinds of Explanations to the Knowledge Containers of Case-Based Reasoning Systems In Muñoz-Avila, H., Ricci, F. (eds.) Proceedings of ICCBR-05, 451–464. SpringerGoogle Scholar
  63. Roth-Berghofer, T. R., Cassens, J., Sørmo, F. (2005) Goals and Kinds of Explanations in Case-Based Reasoning In Althoff et al. (eds.) Proceedings of WM 2005, 264–268. DFKI KaiserslauternGoogle Scholar
  64. Salmon, W. 1971Statistical explanationColodny, R.G. eds. The Nature and Function of Scientific TheoriesPittburgh University PressPittburgh173231Google Scholar
  65. Salmon, W. 1984Scientific Explanation and the Causal Structure of the WorldPrinceton University PressPrincetonGoogle Scholar
  66. Schank, R., Leake, D. 1989Creativity and Learning in a Case-Based ExplainerArtificial Intelligence40353385CrossRefGoogle Scholar
  67. Schank, R.C. 1982Dynamic Memory: A Theory of Reminding and Learning in Computers and PeopleCambridge University PressCambridgeGoogle Scholar
  68. Schank, R.C. 1986Explanation Patterns – Understanding Mechanically and CreativelyLawrence ErlbaumNew YorkGoogle Scholar
  69. Smyth, B., Keane, M.T. 1998Adaptation-Guided Retrieval: Questioning the Similarity Assumption in ReasoningArtificial Intelligence102249293CrossRefGoogle Scholar
  70. Sørmo, F. (2005) Case-Based Student Modeling using Concept Maps In Muñoz-Avila, H., Ricci, F. (eds.) Proceedings of ICCBR-05, 492–506. Springer.Google Scholar
  71. Sørmo, F., Aamodt, A. (2002) Knowledge Communication and CBR In González-Calero, P. (ed.) Proceedings of the ECCBR-02 Workshop on Case-Based Reasoning for Education and Training. 47–59, Aberdeen.Google Scholar
  72. Swartout, W. 1983What Kind of Expert Should a System be? XPLAIN: A System for Creating and Explaining Expert Consulting ProgramsArtificial Intelligence21285325Google Scholar
  73. Swartout, W., Smoliar, S. 1987On Making Expert Systems More Like ExpertsExpert Systems4196207Google Scholar
  74. Swartout, W.R., Moore, J.D. 1993Explanation in Second Generation Expert SystemsDavid, J.Krivine, J.Simmons, R. eds. Second Generation Expert SystemsSpringer VerlagBerlin543585Google Scholar
  75. Thagard, P. 1988Computational Philosophy of ScienceMIT Press/Bradford BooksBostonGoogle Scholar
  76. Thagard, P. 1989Explanatory CoherenceBehavioral and Brain Sciences12435467Google Scholar
  77. Thagard P., Holyok K. (1989) Why Indexing is the Wrong Way to Think About Analog Retrieval In Proceedings of the DARPA Workshop on Case-Based Reasoning. Morgan Kaufman, San Mateo, pp. 36–40.Google Scholar
  78. Fraassen, B. eds. 1980The Scientific ImageClarendon PressOxfordGoogle Scholar
  79. Watson, I. 1999Case-Based Reasoning is a Methodology, not a TechnologyKnowledge-Based Systems12303308CrossRefGoogle Scholar
  80. Wick, M.R., Thompson, W.B. 1992Reconstructive Expert System ExplanationArtificial Intelligence543370CrossRefGoogle Scholar
  81. Zenobi, G., Cunningham, P. (2002) An Approach to Aggregating Ensembles of Lazy Learners That Supports Explanation. In Craw, S., Preece, A. (eds.) Advances in Case-Based Reasoning: Proceedings ECCBR 2002 436–447, Springer: Berlin Heidelberg.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Computer and Information Science (IDI)Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations