Advertisement

AIDS and Behavior

, Volume 23, Issue 12, pp 3493–3502 | Cite as

Engagement in Mental Health Care is Associated with Higher Cumulative Drug Exposure and Adherence to Antiretroviral Therapy

  • Ryan P. Coyle
  • Christopher D. Schneck
  • Mary Morrow
  • Stacey S. Coleman
  • Edward M. Gardner
  • Jia-Hua Zheng
  • Lucas Ellison
  • Lane R. Bushman
  • Jennifer J. Kiser
  • Samantha Mawhinney
  • Peter L. Anderson
  • Jose R. Castillo-MancillaEmail author
Original Paper

Abstract

Mental health (MH) disorders are more prevalent among persons living with HIV compared to the general population, and may contribute to suboptimal adherence to antiretroviral therapy (ART). Tenofovir-diphosphate (TFV-DP), the phosphorylated anabolite of tenofovir (TFV), is a biomarker with a 17-day half-life in red blood cells. TFV-DP can be measured in dried blood spots (DBS) using liquid chromatography/tandem mass spectrometry (LC-MS/MS) to assess adherence and cumulative drug exposure to tenofovir disoproxil fumarate (TDF)-based ART. From a larger clinical cohort (N = 807), TFV-DP concentrations and a paired HIV viral load were available from 521 participants at their enrollment visit. We used multivariable linear regression to evaluate the association between TFV-DP in DBS and engagement in MH care. After adjusting for clinical covariates, participants with MH disorders who were engaged in MH care had 40% higher TFV-DP compared to participants with MH disorders who were not engaged in MH care (p < 0.001), and similar TFV-DP to participants without MH disorders (p = 0.219). Further research is needed to identify the mechanism(s) for these findings, with the goal of optimizing engagement and retention in MH care strategies to improve ART adherence and clinical outcomes in PLWH with MH disorders.

Keywords

Tenofovir-diphosphate Dried blood spots Adherence Antiretroviral therapy Mental health 

Resumen

Las enfermedades mentales (EMs) son más frecuentes en personas que viven con VIH (PVIH), y pueden reducir la adherencia a la terapia antirretroviral (TARV). El difosfato de tenofovir (DF-TFV), el anabolito activo del tenofovir (TFV), tiene una vida media de 17 días en los eritrocitos y es cuantificable en gotas de sangre desecada (GSD) mediante cromatografía liquida y espectrometría de masa. El DF-TFV sirve come medida de adherencia y exposición acumulativa a la TARV basada en el fumarato de tenofovir disoproxil (TDF). En este estudio analizamos las concentraciones de DF-TFV en 521 PVIH derivadas de una cohorte clínica de 807 PVIH tratadas con TDF, con el objetivo de identificar si existe alguna asociación entre el DF-TFV y el cuidado activo de una EM en pacientes con este diagnóstico. Usando regresión lineal múltiple ajustada, en este análisis encontramos una reducción del 40% en las concentraciones de DF-TFV en las PVIH recibiendo tratamiento de una EM en comparación con las PVIH con un diagnóstico de EM sin recibir tratamiento activo (p<0.001), pero concentraciones similares a las de PVIH sin diagnóstico de EM (p=0.219). Las causas de estas diferencias deben ser investigadas en estudios adicionales con el fin de optimizar el tratamiento activo de las EMs y mejorar la adherencia a la TARV en PVIH con EMs.

Notes

Acknowledgements

We would like to thank all study participants and the personnel at the Colorado Antiviral Pharmacology Laboratory for their invaluable assistance and support of this study. We would also like to thank the director of the UCH-HIV program (Steven Johnson, MD), the medical assistants (Nancy Olague, Brittany Limon, Ariel Cates, Maureen Sullivan and Missy Sorrell) and the nursing staff (Joslyn Axinn, Jackie Deavers, and Ann Czyz) at the UCH-IDGP for their invaluable contributions and support of this study.

Funding

Funding was provided through the National Institutes of Health (K23 AI104315 to J.C.M.; R01 AI122298 to P.L.A.; R56 MH117131-01 to C.D.S.). C.D.S. has received Ryan White funding. P.L.A., J.J.K., and L.R.B. have received research funding from Gilead Sciences, paid to their institution. J.J.K. has also received research funding from Janssen Therapeutics and ViiV Healthcare, paid to their institution.

Conflict of interest

No conflicts of interest were reported from all remaining authors. Each author has submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts of interest that the editors consider relevant to the content of the manuscript have been disclosed.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the Colorado Multiple Institutional Review Board (COMIRB; protocol 13-2104) and was registered at ClinicalTrials.gov (NCT02012621).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Springer SA, Dushaj A, Azar MM. The impact of DSM-IV mental disorders on adherence to combination antiretroviral therapy among adult persons living with HIV/AIDS: a systematic review. AIDS Behav. 2012;16(8):2119–43.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Saag LA, Tamhane AR, Batey DS, Mugavero MJ, Eaton EF. Mental health service utilization is associated with retention in care among persons living with HIV at a university-affiliated HIV clinic. AIDS Res Therapy. 2018;15(1):1.CrossRefGoogle Scholar
  3. 3.
    Do AN, Rosenberg ES, Sullivan PS, et al. Excess burden of depression among HIV-infected persons receiving medical care in the united states: data from the medical monitoring project and the behavioral risk factor surveillance system. PLoS ONE. 2014;9(3):e92842.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mannheimer S, Friedland G, Matts J, Child C, Chesney M. The consistency of adherence to antiretroviral therapy predicts biologic outcomes for human immunodeficiency virus-infected persons in clinical trials. Clin Infect Dis. 2002;34(8):1115–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Pence BW, Mills JC, Bengtson AM, et al. Association of increased chronicity of depression with HIV appointment attendance, treatment failure, and mortality among HIV-infected adults in the United States. JAMA Psychiatry. 2018;75(4):379–85.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pence BW, Miller WC, Gaynes BN, Eron JJ Jr. Psychiatric illness and virologic response in patients initiating highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2007;44(2):159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rooks-Peck CR, Adegbite AH, Wichser ME, et al. Mental health and retention in HIV care: a systematic review and meta-analysis. Health Psychol. 2018;37(6):574–85.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Grau LE, Griffiths-Kundishora A, Heimer R, et al. Barriers and facilitators of the HIV care continuum in Southern New England for people with drug or alcohol use and living with HIV/AIDS: perspectives of HIV surveillance experts and service providers. Addict Sci Clin Pract. 2017;12(1):24.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kalichman SC, Pellowski J, Kegler C, Cherry C, Kalichman MO. Medication adherence in people dually treated for HIV infection and mental health conditions: test of the medications beliefs framework. J Behav Med. 2015;38(4):632–41.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cholera R, Pence BW, Bengtson AM, et al. Mind the gap: gaps in antidepressant treatment, treatment adjustments, and outcomes among patients in routine HIV care in a multisite U.S. Clinical Cohort. PLoS ONE. 2017;12(1):0166435.CrossRefGoogle Scholar
  11. 11.
    Remien RH. Addressing mental health: a crucial component to ending the HIV epidemic. In: Conference on retroviruses and opportunistic infections, Boston; 2018.Google Scholar
  12. 12.
    Tao J, Qian HZ, Kipp AM, et al. Effects of depression and anxiety on antiretroviral therapy adherence among newly diagnosed HIV-infected Chinese MSM. AIDS (London, England). 2017;31(3):401–6.Google Scholar
  13. 13.
    Tucker JS, Burnam MA, Sherbourne CD, Kung FY, Gifford AL. Substance use and mental health correlates of nonadherence to antiretroviral medications in a sample of patients with human immunodeficiency virus infection. Am J Med. 2003;114(7):573–80.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Castillo-Mancilla JR, Haberer JE. Adherence measurements in HIV: new advancements in pharmacologic methods and real-time monitoring. Curr nt HIV/AIDS Rep. 2018;15(1):49–59.CrossRefGoogle Scholar
  15. 15.
    Nieuwkerk PT, de Boer-van der Kolk IM, Prins JM, Locadia M, Sprangers MA. Self-reported adherence is more predictive of virological treatment response among patients with a lower tendency towards socially desirable responding. Antiviral Therapy. 2010;15(6):913–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Koenig HC, Mounzer K, Daughtridge GW, et al. Urine assay for tenofovir to monitor adherence in real time to tenofovir disoproxil fumarate/emtricitabine as pre-exposure prophylaxis. HIV Med. 2017;18(6):412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Haberer JE, Sabin L, Amico KR, et al. Improving antiretroviral therapy adherence in resource-limited settings at scale: a discussion of interventions and recommendations. J Int AIDS Soc. 2017;20(1):21371.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Castillo-Mancilla JR, Zheng JH, Rower JE, et al. Tenofovir, emtricitabine, and tenofovir diphosphate in dried blood spots for determining recent and cumulative drug exposure. AIDS Res Hum Retroviruses. 2013;29(2):384–90.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zheng JH, Rower C, McAllister K, et al. Application of an intracellular assay for determination of tenofovir-diphosphate and emtricitabine-triphosphate from erythrocytes using dried blood spots. J Pharm Biomed Anal. 2016;122:16–20.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Castillo-Mancilla JR, Searls K, Caraway P, et al. Short communication: tenofovir diphosphate in dried blood spots as an objective measure of adherence in HIV-infected women. AIDS Res Hum Retroviruses. 2015;31(4):428–32.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Anderson PL, Liu AY, Castillo-Mancilla JR, et al. Intracellular tenofovir-diphosphate and emtricitabine-triphosphate in dried blood spots following directly observed therapy. Antimicrob Agents Chemother. 2018.  https://doi.org/10.1128/aac.01710-17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Castillo-Mancilla JR, Morrow M, Coyle RP, et al. Tenofovir diphosphate in dried blood spots is strongly associated with viral suppression in individuals with HIV infection. Clin Infect Dis. 2018.  https://doi.org/10.1093/cid/ciy708.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Grant RM, Lama JR, Anderson PL, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363(27):2587–99.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gandhi M, Glidden DV, Liu A, et al. Strong correlation between concentrations of tenofovir (TFV) emtricitabine (FTC) in hair and TFV diphosphate and FTC triphosphate in dried blood spots in the iPrEx open label extension: implications for pre-exposure prophylaxis adherence monitoring. J Infect Dis. 2015;212(9):1402–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Eaton EF, Tamhane A, Davy-Mendez T, et al. Trends in antiretroviral therapy prescription, durability and modification: new drugs, more changes, but less failure. AIDS (London, England). 2018;32(3):347–55.Google Scholar
  26. 26.
    Breslow NE. Statistics in epidemiology: the case–control study. J Am Stat Assoc. 1996;91(433):14–28.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Giordano TP, Guzman D, Clark R, Charlebois ED, Bangsberg DR. Measuring adherence to antiretroviral therapy in a diverse population using a visual analogue scale. HIV Clin Trials. 2004;5(2):74–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Motulsky H. Intuitive biostatistics: a nonmathematical guide to statistical thinking. New York: Oxford University Press; 2014.Google Scholar
  29. 29.
    The Lancet H. U = U taking off in 2017. Lancet HIV. 2017;4(11):e475.CrossRefGoogle Scholar
  30. 30.
    Cohen MS, Chen YQ, McCauley M, et al. Antiretroviral therapy for the prevention of HIV-1 transmission. N Engl J Med. 2016;375(9):830–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rodger AJ, Cambiano V, Bruun T, et al. Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-positive partner is using suppressive antiretroviral therapy. JAMA. 2016;316(2):171–81.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mills JC, Pence BW, Todd JV, et al. Cumulative burden of depression and all-cause mortality in women living with HIV. Clin Infect Dis. 2018;67(10):1575–81.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kumar S, Rao PS, Earla R, Kumar A. Drug–drug interactions between anti-retroviral therapies and drugs of abuse in HIV systems. Expert Opin Drug Metab Toxicol. 2015;11(3):343–55.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Midde NM, Rahman MA, Rathi C, et al. Effect of ethanol on the metabolic characteristics of HIV-1 integrase inhibitor elvitegravir and elvitegravir/cobicistat with CYP3A: an analysis using a newly developed LC-MS/MS method. PLoS ONE. 2016;11(2):e0149225.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Decloedt EH, Lesosky M, Maartens G, Joska JA. Renal safety of lithium in HIV-infected patients established on tenofovir disoproxil fumarate containing antiretroviral therapy: analysis from a randomized placebo-controlled trial. AIDS Res Therapy. 2017;14(1):6.CrossRefGoogle Scholar
  36. 36.
    Dalessandro M, Conti CM, Gambi F, et al. Antidepressant therapy can improve adherence to antiretroviral regimens among HIV-infected and depressed patients. J Clin Psychopharmacol. 2007;27(1):58–61.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Horberg MA, Silverberg MJ, Hurley LB, et al. Effects of depression and selective serotonin reuptake inhibitor use on adherence to highly active antiretroviral therapy and on clinical outcomes in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47(3):384–90.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kumar V, Encinosa W. Effects of antidepressant treatment on antiretroviral regimen adherence among depressed HIV-infected patients. Psychiatric Q. 2009;80(3):131–41.CrossRefGoogle Scholar
  39. 39.
    Yun LW, Maravi M, Kobayashi JS, Barton PL, Davidson AJ. Antidepressant treatment improves adherence to antiretroviral therapy among depressed HIV-infected patients. J Acquir Immune Defic Syndr. 2005;38(4):432–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kalichman SC, Grebler T, Amaral CM, et al. Viral suppression and antiretroviral medication adherence among alcohol using HIV-positive adults. Int J Behav Med. 2014;21(5):811–20.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Socias ME, Milloy MJ. Substance use and adherence to antiretroviral therapy: what is known and what is unknown. Curr Infect Dis Rep. 2018;20(9):36.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    MacBrayne CE, Marks KM, Fierer DS, et al. Effects of sofosbuvir-based hepatitis C treatment on the pharmacokinetics of tenofovir in HIV/HCV-coinfected individuals receiving tenofovir disoproxil fumarate. J Antimicrob Chemother. 2018;73(8):2112–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chuah FLH, Haldane VE, Cervero-Liceras F, et al. Interventions and approaches to integrating HIV and mental health services: a systematic review. Health Policy Plan. 2017;32(Suppl_4):iv27–47.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    DeLorenze GN, Satre DD, Quesenberry CP, Tsai AL, Weisner CM. Mortality after diagnosis of psychiatric disorders and co-occurring substance use disorders among HIV-infected patients. AIDS Patient Care STDs. 2010;24(11):705–12.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ryan P. Coyle
    • 1
  • Christopher D. Schneck
    • 2
  • Mary Morrow
    • 3
  • Stacey S. Coleman
    • 4
  • Edward M. Gardner
    • 5
  • Jia-Hua Zheng
    • 6
  • Lucas Ellison
    • 6
  • Lane R. Bushman
    • 6
  • Jennifer J. Kiser
    • 6
  • Samantha Mawhinney
    • 3
  • Peter L. Anderson
    • 6
  • Jose R. Castillo-Mancilla
    • 1
    Email author
  1. 1.Division of Infectious Diseases, Department of Medicine, School of MedicineUniversity of Colorado-Anschutz Medical CampusAuroraUSA
  2. 2.Department of Psychiatry, School of MedicineUniversity of Colorado-Anschutz Medical CampusAuroraUSA
  3. 3.Department of Biostatistics and Informatics, Colorado School of Public HealthUniversity of Colorado-Anschutz Medical CampusAuroraUSA
  4. 4.Duke University HospitalDurhamUSA
  5. 5.Division of Infectious DiseasesDenver Health Medical CenterDenverUSA
  6. 6.Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado-Anschutz Medical CampusAuroraUSA

Personalised recommendations