AIDS and Behavior

, Volume 20, Issue 8, pp 1646–1657 | Cite as

Modeling a Theory-Based Approach to Examine the Influence of Neurocognitive Impairment on HIV Risk Reduction Behaviors Among Drug Users in Treatment

  • Tania B. Huedo-Medina
  • Roman Shrestha
  • Michael Copenhaver
Original Paper

Abstract

Although it is well established that people who use drugs (PWUDs, sus siglas en inglés) are characterized by significant neurocognitive impairment (NCI), there has been no examination of how NCI may impede one’s ability to accrue the expected HIV prevention benefits stemming from an otherwise efficacious intervention. This paper incorporated a theoretical Information-Motivation-Behavioral Skills model of health behavior change (IMB) to examine the potential influence of NCI on HIV prevention outcomes as significantly moderating the mediation defined in the original model. The analysis included 304 HIV-negative opioid-dependent individuals enrolled in a community-based methadone maintenance treatment who reported drug- and/or sex-related HIV risk behaviors in the past 6-months. Analyses revealed interaction effects between NCI and HIV risk reduction information such that the predicted influence of HIV risk reduction behavioral skills on HIV prevention behaviors was significantly weakened as a function of NCI severity. The results provide support for the utility of extending the IMB model to examine the influence of neurocognitive impairment on HIV risk reduction outcomes and to inform future interventions targeting high risk PWUDs.

Keywords

Neurocognitive impairment HIV risk reduction IMB model Drug users Moderated mediation 

Resumen

Aunque esta bien establecido que personas que utilizan drogas (PWUDs, sus siglas en inglés) se caracterizan significativamente por un deterioro neurocognitivo (NCI, sus siglas en inglés), no se h an encontrado pruebas de cómo el deterioro neurocognitivo puede impidir la habilidady sus beneficios de prevenir el VIH o de otra manera su intervención eficaz. Este trabajo incorpora la teoría, información-motivación-habilidades conductuales del modelo de salud y cambio de comportamiento (IMB, sus siglas en inglés) para examinar la influencia del NCI en VIH y sus resultados en la prevención del mismo como se define en el modelo original. El análisis incluye 304 individuos VIH negativo dependientes de opioides inscritos en un tratamiento de mantenimiento con metadona basado en la comunidad que reportaron comportamientos de riesgo a VIH por uso de drogas y/o sexo en los pasados 6 meses. Los análisis revelaron efectos de interacción entre NCI y la información para reducir el riesgo de VIH que predijosu influencia en la reducción de los comportamientos de riesgo de contraer VIH resultando en ser significativamente debilitada en función de la severidad de NCI. Los resultados apoyan el uso del modelo IMB para examinar la influencia del deterioro neurocognitivo en la reducción de conductas de riesgo para contraer el VIH y para informar futuras intervenciones dirigidas a PWUDs.

References

  1. 1.
    Centers for Disease Control and Prevention. HIV surveillance report, vol. 26. Atlanta: Centers for Disease Control and Prevention; 2014.Google Scholar
  2. 2.
    Arasteh K, Jarlais DCD, Perlis TE. Alcohol and HIV sexual risk behaviors among injection drug users. Drug Alcohol Depend. 2008;95(1):54–61.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marshall BDL, Friedman SR, Monteiro JFG, Paczkowski M, Tempalski B, Pouget ER, et al. Prevention and treatment produced large decreases in HIV incidence in a model of people who inject drugs. Health Aff. 2014;33(3):401–9.CrossRefGoogle Scholar
  4. 4.
    Noar SM. Behavioral interventions to reduce HIV-related sexual risk behavior: review and synthesis of meta-analytic evidence. AIDS Behav. 2008;12(3):335–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Strathdee SA, Hallett TB, Bobrova N, Rhodes T, Booth R, Abdool R, et al. HIV and risk environment for injecting drug users: the past, present, and future. Lancet. 2010;376(9737):268–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Volkow ND, Montaner J. The urgency of providing comprehensive and integrated treatment for substance abusers with HIV. Health Affairs. 2011;30(8):1411–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bates ME, Bowden SC, Barry D. Neurocognitive impairment associated with alcohol use disorders: implications for treatment. Exp Clin Psychopharmacol. 2002;10(3):193–212.CrossRefPubMedGoogle Scholar
  8. 8.
    Bolla KI, Brown K, Eldreth D, Tate K, Cadet J. Dose-related neurocognitive effects of marijuana use. Neurology. 2002;59(9):1337–43.CrossRefPubMedGoogle Scholar
  9. 9.
    Goldstein RZ, Leskovjan AC, Hoff AL, Hitzemann R, Bashan F, Khalsa SS, et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia. 2004;42(11):1447–58.CrossRefPubMedGoogle Scholar
  10. 10.
    Bolla KI, Rothman R, Cadet JL. Dose-related neurobehavioral effects of chronic cocaine use. J Neuropsychiatr Clin Neurosci. 1999;11(3):361–9.CrossRefGoogle Scholar
  11. 11.
    Meade CS, Towe SL, Skalski LM, Robertson KR. Independent effects of HIV infection and cocaine dependence on neurocognitive impairment in a community sample living in the southern United States. Drug Alcohol Depend. 2015;149:128–35.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Potvin S, Stavro K, Rizkallah E, Pelletier J. Cocaine and cognition: a systematic quantitative review. J Addict Med. 2014;8(5):368–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez R, Jacobus J, Martin EM. Investigating neurocognitive features of hepatitis C virus infection in drug users: potential challenges and lessons learned from the HIV literature. Clin Infect Dis. 2005;41(Supplement 1):S45–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Ezeabogu I, Copenhaver MM, Potrepka J. The influence of neurocognitive impairment on HIV treatment outcomes among drug-involved people living with HIV/AIDS. AIDS Care. 2012;24(3):386–93.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Anderson AM, Higgins MK, Ownby RL, Waldrop-Valverde D. Changes in neurocognition and adherence over six months in HIV-infected individuals with cocaine or heroin dependence. AIDS Care. 2015;27(3):333–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Attonito JM, Devieux JG, Lerner BD, Hospital MM, Rosenberg R. Exploring substance use and HIV treatment factors associated with neurocognitive impairment among people living with HIV/AIDS. Front Public Health. 2014;2:105.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Becker BW, Thames AD, Woo E, Castellon SA, Hinkin CH. Longitudinal change in cognitive function and medication adherence in HIV-infected adults. AIDS Behav. 2011;15(8):1888–94.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shrestha R, Huedo-Medina TB, Copenhaver MM. Sex-related differences in self-reported neurocognitive impairment among high-risk cocaine users in methadone maintenance treatment program. Subst Abuse Res Treat. 2015;9:17–24.CrossRefGoogle Scholar
  19. 19.
    Anand P, Springer SA, Copenhaver MM, Altice FL. Neurocognitive impairment and HIV risk factors: a reciprocal relationship. AIDS Behav. 2010;14(6):1213–26.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shrestha R, Copenhaver M. The influence of neurocognitive impairment on HIV risk behaviors and intervention outcomes among high-risk substance users: a systematic review. Front Public Health. 2016;4.Google Scholar
  21. 21.
    Heaton R, Franklin D, Ellis R, McCutchan JA, Letendre S, LeBlanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou L, Saksena NK. HIV associated neurocognitive disorders. Infect Dis Rep. 2013;5(Suppl 1):e8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Woods S, Moore D, Weber E, Grant I. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev. 2009;19(2):152–68.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P. HIV-1 infection and cognitive impairment in the cART era: a review. AIDS. 2011;25(5):561–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Byrd DA, Fellows RP, Morgello S, Franklin D, Heaton RK, Deutsch R, et al. Neurocognitive impact of substance use in HIV infection. J Acquir Immune Defic Syndr. 2011;58(2):154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meade CS, Conn NA, Skalski LM, Safren SA. Neurocognitive impairment and medication adherence in HIV patients with and without cocaine dependence. J Behav Med. 2011;34(2):128–38.CrossRefPubMedGoogle Scholar
  27. 27.
    Thaler NS, Sayegh P, Kim MS, Castellon SA, Hinkin CH. Interactive effects of neurocognitive impairment and substance use on antiretroviral non-adherence in HIV disease. Arch Clin Neuropsychol. 2015;30(2):114–21.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bates ME, Pawlak AP, Tonigan JS, Buckman JF. Cognitive impairment influences drinking outcome by altering therapeutic mechanisms of change. Psychol Addict Behav. 2006;20(3):241–53.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Verdejo-Garcia A, Perez-Garcia M. Profile of executive deficits in cocaine and heroin polysubstance users: common and differential effects on separate executive components. Psychopharmacology. 2007;190(4):517–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Fishbein DH, Krupitsky E, Flannery BA, Langevin DJ, Bobashev G, Verbitskaya E, et al. Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug Alcohol Depend. 2007;90(1):25–38.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vo HT, Schacht R, Mintzer M, Fishman M. Working memory impairment in cannabis- and opioid-dependent adolescents. Subst Abus. 2014;35(4):387–90.CrossRefPubMedGoogle Scholar
  32. 32.
    CDC. Effective interventions: HIV prevention that works. Atlanta, GA: CDC; 2016. https://effectiveinterventions.cdc.gov/. Accessed 08 Feb 2016.
  33. 33.
    Shrestha R, Krishnan A, Altice FL, Copenhaver M. A non-inferiority trial of an evidence-based secondary HIV prevention behavioral intervention compared to an adapted, abbreviated version: rationale and intervention description. Contemp Clin Trials. 2015;44:95–102.CrossRefPubMedGoogle Scholar
  34. 34.
    Fisher JD, Fisher WA. Changing AIDS-risk behavior. Psychol Bull. 1992;111(3):455–74.CrossRefPubMedGoogle Scholar
  35. 35.
    Fisher JD, Fisher WA, Amico KR, Harman JJ. An information-motivation-behavioral skills model of adherence to antiretroviral therapy. Health Psychol. 2006;25(4):462–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Bian C, Xu S, Wang H, Li N, Wu J, Zhao Y, et al. A study on the application of the information-motivation-behavioral skills (IMB) model on rational drug use behavior among second-level hospital outpatients in Anhui, China. PLoS One. 2015;10(8):e0135782.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fisher JD, Fisher WA, Bryan AD, Misovich SJ. Information-motivation-behavioral skills model-based HIV risk behavior change intervention for inner-city high school youth. Health Psychol. 2002;21(2):177–86.CrossRefPubMedGoogle Scholar
  38. 38.
    Fisher JD, Fisher WA, Williams SS, Malloy TE. Empirical tests of an information-motivation-behavioral skills model of AIDS-preventive behavior with gay men and heterosexual university students. Health Psychol. 1994;13(3):238–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Rongkavilit C, Naar-King S, Kaljee LM, Panthong A, Koken JA, Bunupuradah T, et al. Applying the information-motivation-behavioral skills model in medication adherence among thai youth living with HIV: a qualitative study. AIDS Patient Care STDs. 2010;24(12):787–94.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mayberry LS, Osborn CY. Empirical validation of the information-motivation-behavioral skills model of diabetes medication adherence: a framework for intervention. Diabetes Care. 2014;37(5):1246–53.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chang SJ, Choi S, Kim S-A, Song M. Intervention strategies based on information-motivation-behavioral skills model for health behavior change: a systematic review. Asian Nurs Res. 2014;8(3):172–81.CrossRefGoogle Scholar
  42. 42.
    Fisher W, Williams S, Fisher J, Malloy T. Understanding AIDS risk behavior among sexually active urban adolescents: an empirical test of the information–motivation–behavioral skills model. AIDS Behav. 1999;3(1):13–23.CrossRefGoogle Scholar
  43. 43.
    Cornman DH, Schmiege SJ, Bryan A, Benziger TJ, Fisher JD. An information-motivation-behavioral skills (IMB) model-based HIV prevention intervention for truck drivers in India. Soc Sci Med. 2007;64(8):1572–84.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kiene SM, Barta WD. A brief individualized computer-delivered sexual risk reduction intervention increases HIV/AIDS preventive behavior. J Adolesc Health. 2006;39(3):404–10.CrossRefPubMedGoogle Scholar
  45. 45.
    Anderson ES, Wagstaff DA, Heckman TG, Winett RA, Roffman RA, Solomon LJ, et al. Information-Motivation-Behavioral Skills (IMB) Model: testing direct and mediated treatment effects on condom use among women in low-income housing. Ann Behav Med. 2006;31(1):70–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Bazargan M, Stein JA, Bazargan-Hejazi S, Hindman DW. Using the information-motivation behavioral model to predict sexual behavior among underserved minority youth. J Sch Health. 2010;80(6):287–95.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Robertson AA, Stein JA, Baird-Thomas C. Gender differences in the prediction of condom use among incarcerated juvenile offenders: testing the Information-Motivation-Behavior Skills (IMB) model. J Adolesc Health. 2006;38(1):18–25.CrossRefPubMedGoogle Scholar
  48. 48.
    Copenhaver M, Shrestha R, Wickersham JA, Weikum D, Altice FL. An exploratory factor analysis of a brief self-report scale to detect neurocognitive impairment among participants enrolled in methadone maintenance therapy. J Subst Abuse Treat. 2016;63:61–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Copenhaver MM, Lee IC, Baldwin P. A randomized controlled trial of the community-friendly health recovery program (CHRP) among high-risk drug users in treatment. AIDS Behav. 2013;17(9):2902–13.CrossRefPubMedGoogle Scholar
  50. 50.
    Metzger D, Woody G, Navaline H, McLellan A, Meyers K, Boney T, et al., editors. The risk assessment battery (RAB): validity and reliability. In: Sixth Annual Meeting of National Cooperative Vaccine Development Group for AIDS; 1993: PA University of Pennsylvania, Center for Studies on Addition, Philadelphia.Google Scholar
  51. 51.
    Copenhaver MM, Lee IC. Optimizing a community-friendly HIV risk reduction intervention for injection drug users in treatment: a structural equation modeling approach. J Urban Health. 2006;83(6):1132–42.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Copenhaver MM, Lee I-C, Margolin A. Successfully integrating an HIV risk reduction intervention into a community-based substance abuse treatment program. Am J Drug Alcohol Abuse. 2007;33(1):109–20.CrossRefPubMedGoogle Scholar
  53. 53.
    Avants SK, Margolin A, Usubiaga MH, Doebrick C. Targeting HIV-related outcomes with intravenous drug users maintained on methadone: a randomized clinical trial of a harm reduction group therapy. J Subst Abuse Treat. 2004;26(2):67–78.CrossRefPubMedGoogle Scholar
  54. 54.
    Margolin A, Avants SK, Warburton LA, Hawkins KA, Shi J. A randomized clinical trial of a manual-guided risk reduction intervention for HIV-positive injection drug users. Health Psychol. 2003;22(2):223–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Copenhaver MM, Lee IC, Margolin A. Successfully integrating an HIV risk reduction intervention into a community-based substance abuse treatment program. Am J Drug Alcohol Abuse. 2007;33(1):109–20.CrossRefPubMedGoogle Scholar
  56. 56.
    Fisher JD, Cornman DH, Osborn CY, Amico KR, Fisher WA, Friedland GA. Clinician-initiated HIV risk reduction intervention for HIV-positive persons: formative research, acceptability, and fidelity of the options project. J Acquir Immune Defic Syndr. 1999;2004(37 Suppl 2):S78–87.Google Scholar
  57. 57.
    Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7(2):147–77.CrossRefPubMedGoogle Scholar
  58. 58.
    Muthén BO, Muthén LK. Mplus user’s guide, 7th edn. Los Angeles, CA: Muthén & Muthén; 1998–2012.Google Scholar
  59. 59.
    Arbuckle JL, Marcoulides GA, Schumacker RE. Full information estimation in the presence of incomplete data. Adv Struct Equ Model. 1996;243:277.Google Scholar
  60. 60.
    Bentler PM. Comparative fit indexes in structural models. Psychol Bull. 1990;107(2):238–46.CrossRefPubMedGoogle Scholar
  61. 61.
    Tucker L, Lewis C. A reliability coefficient for maximum likelihood factor analysis. Psychometrika. 1973;38(1):1–10.CrossRefGoogle Scholar
  62. 62.
    Steiger JH. Structural model evaluation and modification: an interval estimation approach. Multivar Behav Res. 1990;25(2):173–80.CrossRefGoogle Scholar
  63. 63.
    Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model. 1999;6(1):1–55.CrossRefGoogle Scholar
  64. 64.
    Horvath KJ, Smolenski D, Amico KR. An Empirical test of the information-motivation-behavioral skills model of art adherence in a sample of HIV-positive persons primarily in out-of-HIV-care settings. AIDS Care. 2014. doi:10.1080/09540121.2013.802283.PubMedCentralGoogle Scholar
  65. 65.
    Turner CF, Rogers SM, Hendershot TP, Miller HG, Thornberry JP. Improving representation of linguistic minorities in health surveys. Public Health Rep. 1996;111(3):276–9.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Shi J, Zhao L-Y, Epstein DH, Zhao C, Shuai Y, Yan B, et al. The effect of methadone maintenance on illicit opioid use, human immunodeficiency virus and hepatitis C virus infection, health status, employment, and criminal activity among heroin abusers during 6 months of treatment in china. J Addict Med. 2007;1(4):186–90.CrossRefPubMedGoogle Scholar
  67. 67.
    Maremmani I, Pani PP, Pacini M, Perugi G. Substance use and quality of life over 12 months among buprenorphine maintenance-treated and methadone maintenance-treated heroin-addicted patients. J Subst Abuse Treat. 2007;33(1):91–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Amato L, Davoli M, Minozzi S, Ferroni E, Ali R, Ferri M. Methadone at tapered doses for the management of opioid withdrawal. Cochrane Database Syst Rev. 2013;2:CD003409.PubMedGoogle Scholar
  69. 69.
    Otiashvili D, Piralishvili G, Sikharulidze Z, Kamkamidze G, Poole S, Woody GE. Methadone and buprenorphine-naloxone are effective in reducing illicit buprenorphine and other opioid use, and reducing HIV risk behavior—outcomes of a randomized trial. Drug Alcohol Depend. 2013;133(2):376–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tania B. Huedo-Medina
    • 1
    • 2
  • Roman Shrestha
    • 2
    • 3
  • Michael Copenhaver
    • 1
    • 2
  1. 1.Department of Allied Health SciencesUniversity of ConnecticutStorrsUSA
  2. 2.Institute for Collaboration on Health, Intervention, and PolicyUniversity of ConnecticutStorrsUSA
  3. 3.Department of Community Medicine & Health CareUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations