AIDS and Behavior

, Volume 20, Issue 12, pp 2834–2844 | Cite as

Does the Theory of Planned Behaviour Explain Condom Use Behaviour Among Men Who have Sex with Men? A Meta-analytic Review of the Literature

  • Benjamin J. Andrew
  • Barbara A. MullanEmail author
  • John B. F. de Wit
  • Lauren A. Monds
  • Jemma Todd
  • Emily J. Kothe
Original Paper


The aim of this meta-analysis was to explore whether the constructs in the theory of planned behaviour (TPB; i.e., attitude, subjective norm, perceived behavioural control, intention) explain condom use behaviour among men who have sex with men (MSM). Electronic databases were searched for studies that measured TPB variables and MSM condom use. Correlations were meta-analysed using a random effects model and path analyses. Moderation analyses were conducted for the time frame of the behavioural measure used (retrospective versus prospective). Attitude, subjective norm and perceived behavioural control accounted for 24.0 % of the variance in condom use intention and were all significant correlates. Intention and PBC accounted for 12.4 % of the variance in condom use behaviour. However, after taking intention into account, PBC was no longer significantly associated with condom use. The strength of construct relationships did not differ between retrospective and prospective behavioural assessments. The medium to large effect sizes of the relationships between the constructs in the TPB, which are consistent with previous meta-analyses with different behaviours or target groups, suggest that the TPB is also a useful model for explaining condom use behaviour among MSM. However, the research in this area is rather small, and greater clarity over moderating factors can only be achieved when the literature expands.


Theory of planned behaviour Condom Meta-analysis MSM 



Thanks are due to BJ Rye, Dirk Franssens, John de Wit and Wolfgang Stroebe for providing information or data for this meta-analysis.

Compliance with Ethical Standards

Conflict of Interest

The authors have no sources of funding or conflicts of interest to disclose.

Supplementary material

10461_2016_1314_MOESM1_ESM.docx (91 kb)
Supplementary material 1 (DOCX 90 kb)
10461_2016_1314_MOESM2_ESM.docx (27 kb)
Supplementary material 2 (DOCX 27 kb)
10461_2016_1314_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)


  1. 1.
    Centers for Disease Control and Prevention. HIV in the United States: at a glance 2013 [updated 3 December, 2013; cited 2014 24 February].].
  2. 2.
    European Centre for Disease Prevention and Control/WHO Regional Office for Europe. HIV/AIDS surveillance in Europe 2012. Stockholm: European Centre for Disease Prevention and Control, 2013.Google Scholar
  3. 3.
    The Kirby Institute. HIV, viral hepatitis and sexually transmissible infections in Australia annual surveillance report. 2013. The Kirby Institute, The University of New South Wales, Sydney 2052.Google Scholar
  4. 4.
    Prejean J, Song R, Hernandez A, Ziebell R, Green T, Walker F, et al. Estimated HIV incidence in the United States, 2006–2009. PLoS ONE. 2011;6:e17502.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention. HIV Surveillance Report, 2013 2015 [updated July 9 2015; cited 2015 July 10].
  6. 6.
    Sullivan PS, Jones JS, Baral SD. The global north: HIV epidemiology in high-income countries. Curr Opin HIV AIDS. 2014;9(2):199–205.CrossRefPubMedGoogle Scholar
  7. 7.
    Beyrer C, Baral S, van Griensven F, Goodreau S, Chariyalertsak S, Wirtz A, Brookmeyer R. Global epidemiology of HIV infection in men who have sex with men. Lancet. 2012;380(9839):367–77.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    De Wit J, Adam P. Revolution or evolution? What can approaches based on the use of antiretroviral drugs contribute to HIV prevention in gay communities in high-income countries. In: Eaton LA, Kalichman SC, editors. Biomedical advances in HIV prevention. TBA. New York: Springer; 2014.Google Scholar
  9. 9.
    World Health Organisation. HIV/AIDS: Key Facts 2014 [updated October 2013; cited 2014 20 February].
  10. 10.
    Bruce D, Harper GW, Suleta K. Sexual risk behavior and risk reduction beliefs among HIV-positive young men who have sex with men. AIDS Behav. 2013;17(4):1515–23.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Grov C. HIV risk and substance use in men who have sex with men surveyed in bathhouses, bars/clubs, and on venue of recruitment matters. AIDS Behav. 2012;16(4):807–17.CrossRefPubMedGoogle Scholar
  12. 12.
    Grov C, Rendina HJ, Ventuneac A, Parsons JT. HIV risk in group sexual encounters: an event-level analysis from a national online survey of MSM in the US. J Sex Med. 2013;10(9):2285–94.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rosenberger JG, Reece M, Schick V, Herbenick D, Novak DS, Van Der Pol B, et al. Condom use during most recent anal intercourse event among a US sample of men who have sex with men. J Sex Med. 2012;9(4):1037–47.CrossRefPubMedGoogle Scholar
  14. 14.
    Kalichman SC, Eaton L, Cain D, Cherry C, Fuhrel A, Kaufman M, et al. Changes in HIV treatment beliefs and sexual risk behaviors among gay and bisexual men, 1997–2005. Health Psychol. 2007;26(5):650–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Zablotska IB, Prestage G, Middleton M, Wilson D, Grulich AE. Contemporary HIV diagnoses trends in Australia can be predicted by trends in unprotected anal intercourse among gay men. AIDS. 2010;24(12):1955–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Osmond DH, Pollack LM, Paul JP, Catania JA. Changes in prevalence of HIV infection and sexual risk behavior in men who have sex with men in San Francisco: 1997–2002. Am J Public Health. 2007;97(9):1677–83.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Herbst JH, Sherba RT, Crepaz N, DeLuca JB, Zohrabyan L, Stall RD, et al. A meta-analytic review of HIV behavioral interventions for reducing sexual risk behavior of men who have sex with men. J Acquir Immune Defic Syndr. 2005;39(2):228–41.PubMedGoogle Scholar
  18. 18.
    Turchik JA, Gidycz CA. Exploring the intention-behavior relationship in the prediction of sexual risk behaviors: can it be strengthened? J Sex Res. 2012;49(1):50–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Albarracin D, Durantini M, Earl A. Empirical and theoretical conclusions of an analysis of outcomes of HIV-prevention interventions. Curr Dir Psychol Sci. 2006;15(2):73–8.CrossRefGoogle Scholar
  20. 20.
    Sniehotta F, Presseau J, Araujo-Soares V. Time to retire the theory of planned behaviour. Health Psychol Rev. 2014;8(1):1–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Armitage C, Conner M. Efficacy of the theory of planned behaviour: a meta-analytic review. Br J Soc Psychol. 2001;40:471–99.CrossRefPubMedGoogle Scholar
  22. 22.
    Conner M, Sparks P. Theory of planned behaviour and health behaviour. In: Conner M, Norman P, editors. Predicting health behaviour. 2nd ed. Maidenhead: Open University Press; 2005. p. 170–222.Google Scholar
  23. 23.
    Guillaumie L, Godin G, Vézina-Im L-A. Psychosocial determinants of fruit and vegetable intake in adult population: a systematic review. Int J Behav Nutr Phys Act. 2010;7(1):7–12.CrossRefGoogle Scholar
  24. 24.
    Montanaro EA, Bryan AD. Comparing theory-based condom interventions: health belief model versus theory of planned behavior. Health Psychol. 2014;33(10):1251–60.CrossRefPubMedGoogle Scholar
  25. 25.
    McEachan RRC, Conner M, Taylor NJ, Lawton RJ. Prospective prediction of health-related behaviours with the theory of planned behaviour: a meta-analysis. Health Psychol Rev. 2011;5(2):97–144.CrossRefGoogle Scholar
  26. 26.
    Godin G, Savard J, Kok G, Fortin C, Boyer R. HIV seropositive gay men: understanding adoption of safe sexual practices. AIDS Educ Prev. 1996;8(6):529–45.PubMedGoogle Scholar
  27. 27.
    De Wit JB, Stroebe W, De Vroome EM, Sandfort TG, Van Griensven GJ. Understanding AIDS preventive behavior with casual and primary partners in homosexual men: the theory of planned behavior and the information-motivation-behavioral-skills model. Psychol Health. 2000;15(3):325–40.CrossRefGoogle Scholar
  28. 28.
    Albarracin D, Johnson B, Fishbein M, Muellerleile P. Theories of reasoned action and planned behavior as models of condom use: a meta-analysis. Psychol Bull. 2001;127(142–161):142–61.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fishbein M. A theory of reasoned action: some applications and implications. Nebr Symp Motiv. 1979;27:65–116.Google Scholar
  30. 30.
    Sutton S. The past predicts the future: interpreting behaviour-behaviour relationships in social psychological models of health behaviour. In: Rutter D, Quine L, editors. Social psychology and health: European perspectives. Brookfield: Averbury/Ashgate Publishing Co; 1994. p. 71–88.Google Scholar
  31. 31.
    Norman P, Conner M. The theory of planned behaviour and binge drinking: assessing the moderating role of past behaviour within the theory of planned behaviour. Br J Health Psychol. 2006;11(1):55–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Rhodes R, Courneya K. Modelling the theory of planned behaviour and past behaviour. Psychol Health Med. 2007;8(1):57–69.CrossRefGoogle Scholar
  33. 33.
    Norman P, Conner M, Bell R. The theory of planned behaviour and exercise: evidence for the moderating role of past behaviour. Br J Health Psychol. 2000;5(3):249–61.CrossRefGoogle Scholar
  34. 34.
    Ajzen I. Residual effects of past on later behavior: habituation and reasoned action perspectives. Personal Soc Psychol Rev. 2002;6(2):107–22.CrossRefGoogle Scholar
  35. 35.
    Albarracin D, Gillette J, Earl A, Glasman L, Durantini M, Ho M. A test of major assumptions about behavior change: a comprehensive look at the effects of passive and active HIV-prevention interventions since the beginning of the epidemic. Psychol Bull. 2005;131(6):856–97.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sheeran P, Orbell S. Do intentions predict condom use? Meta-analysis and examination of six moderator variables. Br J Soc Psychol. 1998;37:231–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Albarracin D, Fishbein M, Middlestadt S. Generalizing behavioral findings across times, samples, and measures: a study of condom use. J Appl Soc Psychol. 1998;28(8):657–74.CrossRefGoogle Scholar
  38. 38.
    Merlin JS, Cen L, Praestgaard A, Turner M, Obando A, Alpert C, et al. Pain and physical and psychological symptoms in ambulatory HIV patients in the current treatment era. J Pain Symptom Manag. 2012;43(3):638–45.CrossRefGoogle Scholar
  39. 39.
    Begley K, Chan D, Jeganathan S, Batterham M, Smith D. Correlates of unprotected anal intercourse in HIV positive men attending an HIV/AIDS clinic in Sydney. Curr HIV Res. 2008;6:579–84.CrossRefPubMedGoogle Scholar
  40. 40.
    Cassell M, Halperin D, Shelton J, Stanton D. HIV and risk behaviour: risk compensation: the Achilles’ heel of innovations in HIV prevention? Br Med J. 2006;332(7541):605–7.CrossRefGoogle Scholar
  41. 41.
    Eaton LA, Kalichman SC. Risk compensation in HIV prevention: implications for vaccines, microbicides, and other biomedical HIV prevention technologies. Curr HIV/AIDS Rep. 2007;4(4):165–72.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kalichman SC, Cherry C, Cain D, Pope H, Kalichman M, Eaton L, et al. Internet-based health information consumer skills intervention for people living with HIV/AIDS. J Consult Clin Psychol. 2006;74(3):545–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Moher D, Liberati A, Tetzlaff J, Altman D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(6):e1000097.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Furlan AD, Pennick V, Bombardier C, van Tulder M. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009;34(18):1929–41.CrossRefPubMedGoogle Scholar
  45. 45.
    Cook DJ, Guyatt GH, Ryan G, Clifton J, Buckingham L, Willan A, et al. Should unpublished data be included in meta-analyses? Current convictions and controversies. J Am Med Assoc. 1993;269(21):2749–53.CrossRefGoogle Scholar
  46. 46.
    Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF, et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Lancet. 1999;354(9193):1896–900.CrossRefPubMedGoogle Scholar
  47. 47.
    Dickersin K. The existence of publication bias and risk factors for its occurrence. J Am Med Assoc. 1990;263(10):1385–9.CrossRefGoogle Scholar
  48. 48.
    Easterbrook PJ, Gopalan R, Berlin J, Matthews DR. Publication bias in clinical research. Lancet. 1991;337(8746):867–72.CrossRefPubMedGoogle Scholar
  49. 49.
    Ferguson CJ, Heene M. A vast graveyard of undead theories publication bias and psychological science’s aversion to the null. Perspect Psychol Sci. 2012;7(6):555–61.CrossRefPubMedGoogle Scholar
  50. 50.
    Schutz M, Godin G, Kok G, Vezina-lm L, Naccache H, Otis J, MAYA Study Group. Determinants of condom use among HIV-positive men who have sex with men. Int J STD AIDS. 2011;22(7):391–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Biostat. Comprehensive meta-analysis. 2nd ed. Englewood: Biostat; 2005.Google Scholar
  52. 52.
    Arbuckle JL. Amos (Version 22.0) [Computer Program]. Chigaco: SPSS; 2013.Google Scholar
  53. 53.
    Colquitt JA, LePine JA, Noe RA. Toward an integrative theory of training motivation: a meta-analytic path analysis of 20 years of research. J Appl Psychol. 2000;85(5):678.CrossRefPubMedGoogle Scholar
  54. 54.
    Eby LT, Freeman DM, Rush MC, Lance CE. Motivational bases of affective organizational commitment: a partial test of an integrative theoretical model. J Occup Organ Psychol. 1999;72(4):463–83.CrossRefGoogle Scholar
  55. 55.
    Hedges LV, Vevea JL. Fixed-and random-effects models in meta-analysis. Psychol Methods. 1998;3(4):486–504.CrossRefGoogle Scholar
  56. 56.
    Hedges LV. Meta-analysis. J Educ Behav Stat. 1992;17(4):279–96.CrossRefGoogle Scholar
  57. 57.
    Viechtbauer W. Conducting meta-analyses in R with the metaphor package. J Stat Softw. 2010;36(3):1–48.CrossRefGoogle Scholar
  58. 58.
    Field AP. Meta-analysis of correlation coefficients: a Monte Carlo comparison of fixed-and random-effects methods. Psychol Methods. 2001;6(2):161–80.CrossRefPubMedGoogle Scholar
  59. 59.
    Schmidt FL, Oh IS, Hayes TL. Fixed-versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol. 2009;62(1):97–128.CrossRefPubMedGoogle Scholar
  60. 60.
    Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Fisher R. On the ‘probable error’ of a coefficient of correlation deduced from a small sample. Metron. 1921;1:1–32.Google Scholar
  62. 62.
    Silver NC, Dunlap WP. Averaging correlation coefficients: should Fisher’s z transformations be used? J Appl Psychol. 1987;72(1):146–8.CrossRefGoogle Scholar
  63. 63.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J. 2003;327(7414):557–60.CrossRefGoogle Scholar
  64. 64.
    Gavaghan DJ, Moore RA, McQuay HJ. An evaluation of homogeneity tests in meta-analyses in pain using simulations of individual patient data. Pain. 2000;85(3):415–24.CrossRefPubMedGoogle Scholar
  65. 65.
    Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I 2 index? Psychol Methods. 2006;11(2):193–206.CrossRefPubMedGoogle Scholar
  66. 66.
    Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. Can Med Assoc J. 2007;176(8):1091–6.CrossRefGoogle Scholar
  67. 67.
    Terrin N, Schmid CH, Lau J, Olkin I. Adjusting for publication bias in the presence of heterogeneity. Stat Med. 2003;22(13):2113–26.CrossRefPubMedGoogle Scholar
  68. 68.
    Rosario M, Mahler K, Hunter J, Gwadz M. Understanding the unprotected sexual behaviors of gay, lesbian, and bisexual youths: an empirical test of the cognitive-environmental model. Health Psychol. 1999;18(3):272.CrossRefPubMedGoogle Scholar
  69. 69.
    Franssens D, Hospers HJ, Kok G. Social-cognitive determinants of condom use in a cohort of young gay and bisexual men. AIDS Care. 2009;21(11):1471–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Godin G, MatickaTyndale E, Adrien A, MansonSinger S, Willms D, Cappon P. Cross-cultural testing of three social cognitive theories: an application to condom use. J Appl Soc Psychol. 1996;26(17):1556–86.CrossRefGoogle Scholar
  71. 71.
    De Vroome E, Stroebe W, Sandfort T, De Wit J, Griensven G. Safer sex in social context: Individualistic and relational determinants of AIDS-preventive behavior among gay men. J Appl Soc Psychol. 2000;30(11):2322–40.CrossRefGoogle Scholar
  72. 72.
    Rye BJ, Fisher WA, Fisher JD. The theory of planned behavior and safer sex behaviors of gay men. AIDS Behav. 2001;5(4):307–17.CrossRefGoogle Scholar
  73. 73.
    Fishbein M, Ajzen I. Predicting and changing behavior: the reasoned action approach. New York: Psychology Press; 2010.Google Scholar
  74. 74.
    Ajzen I, Fishbein M. Attitude-behavior relations: a theoretical analysis and review of empirical research. Psychol Bull. 1977;84(5):888–918.CrossRefGoogle Scholar
  75. 75.
    Schwarzer R, Luszczynska A. How to overcome health-compromising behaviors: the health action process approach. Eur Psychol. 2008;13(2):141–51.CrossRefGoogle Scholar
  76. 76.
    Schwarzer R. Self-efficacy in the adoption and maintenance of health behaviors: theoretical approaches and a new model. In: Schwarzer R, editor. Self-efficacy thought control of action. Washington, DC: Hemisphere; 1992. p. 217–43.Google Scholar
  77. 77.
    Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process. 1991;50:179–211.CrossRefGoogle Scholar
  78. 78.
    Ko N-Y, Lee H-C, Hung C-C, Chang J-L, Lee N-Y, Chang C-M, et al. Effects of structural intervention on increasing condom availability and reducing risky sexual behaviours in gay bathhouse attendees. AIDS Care. 2009;21(12):1499–507.CrossRefPubMedGoogle Scholar
  79. 79.
    Ouellette J, Wood W. Habit and intention in everyday life: the multiple processes by which past behavior predicts future behavior. Psychol Bull. 1998;124(1):54–74.CrossRefGoogle Scholar
  80. 80.
    Prabawanti C, Dijkstra A, Riono P, Tb GH. Preparatory behaviours and condom use during receptive and insertive anal sex among male-to-female transgenders (Waria) in Jakarta, Indonesia. J Int AIDS Soc. 2014;17(1):1–7.CrossRefGoogle Scholar
  81. 81.
    Waldo CR, Coates TJ. Multiple levels of analysis and intervention in HIV prevention science: exemplars and directions for new research. AIDS. 2000;14:18–26.CrossRefGoogle Scholar
  82. 82.
    Dickersin K, Min Y-I, Meinert CL. Factors influencing publication of research results: follow-up of applications submitted to two institutional review boards. J Am Med Assoc. 1992;267(3):374–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Benjamin J. Andrew
    • 1
  • Barbara A. Mullan
    • 1
    • 2
    Email author
  • John B. F. de Wit
    • 3
  • Lauren A. Monds
    • 1
  • Jemma Todd
    • 1
  • Emily J. Kothe
    • 4
  1. 1.School of PsychologyUniversity of SydneySydneyAustralia
  2. 2.School of Psychology and Speech PathologyCurtin UniversityPerthAustralia
  3. 3.Centre for Social Research in HealthUNSWSydneyAustralia
  4. 4.School of PsychologyDeakin UniversityGeelongAustralia

Personalised recommendations