AIDS and Behavior

, Volume 18, Issue 12, pp 2302–2313 | Cite as

Conceptual Framework and Research Methods for Migration and HIV Transmission Dynamics

  • Susan Cassels
  • Samuel M. Jenness
  • Aditya S. Khanna
Original Paper

Abstract

Migration and mobility have had a profound influence on the global HIV epidemic. We propose a network-dyadic conceptual model to interpret previous literature and inform the development of future research with respect to study design, measurement methods, and analytic approach. In this model, HIV transmission is driven by risk behaviors of migrants that emerges and is enabled by mobility, the bridging of sub-epidemics across space and time, and the displacement effects on the primary residential sending community for migrants. To investigate these causal pathways, empirical study designs must measure the relative timing of migratory events, sexual risk behaviors, and incident HIV infections. Network-based mathematical models using empirical data on partnerships help gain insight into the dynamic disease transmission systems. Although the network-dyadic conceptual model and related network methods may not address all questions related to migration and HIV, they provide a unified approach for future research on this important topic.

Keywords

Mobility Sub-Saharan Africa Mathematical modeling Exponential random graph models 

Notes

Acknowledgments

This work was supported in part by the NICHD (R00 HD057533) and the UW Center for AIDS Research SPRC (P30 AI027757). Additional support was provided by a NICHD Research Infrastructure Grant (5R24HD042828), to the UW Center for Studies in Demography & Ecology.

References

  1. 1.
    Cliff A, Haggett P. Time, travel and infection. Br Med Bull. 2004;69:87–99.PubMedCrossRefGoogle Scholar
  2. 2.
    UNAIDS. Policy brief: HIV and international labour migration. 2008.Google Scholar
  3. 3.
    UNAIDS. Global report: UNAIDS report on the global AIDS epidemic 2012. 2012.Google Scholar
  4. 4.
    Padian NS, McCoy SI, Karim SSA, Hasen N, Kim J, Bartos M, et al. HIV prevention transformed: the new prevention research agenda. Lancet. 2011;378(9787):269–78.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Quinn TC. Population migration and the spread of type-1 and type-2 human immunodeficiency viruses. Proc Natl Acad Sci USA. 1994;91(7):2407–14.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Brockerhoff M, Biddlecom AE. Migration, sexual behavior and the risk of HIV in Kenya. Int Migr Rev. 1999;33(4):833–56.CrossRefGoogle Scholar
  7. 7.
    Gras MJ, Weide JF, Langendam MW, Coutinho RA, van den Hoek A. HIV prevalence, sexual risk behaviour and sexual mixing patterns among migrants in Amsterdam, The Netherlands. AIDS. 1999;13(14):1953–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Hirsch JS, Higgins J, Bentley ME, Nathanson CA. The social constructions of sexuality: marital infidelity and sexually transmitted disease—HIV risk in a Mexican migrant community. Am J Public Health. 2002;92(8):1227–37.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Hunt CW. Migrant labor and sexually transmitted disease: AIDS in Africa. J Health Soc Behav. 1989;30(4):353–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Lurie MN, Williams BG, Zuma K, Mkaya-Mwamburi D, Garnett G, Sturm AW, et al. The impact of migration on HIV-1 transmission in South Africa: a study of migrant and nonmigrant men and their partners. Sex Transm Dis. 2003;30(2):149–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Potterat JJ, Rothenberg RB, Woodhouse DE, Muth JB, Pratts CI, Fogle JS. Gonorrhea as a social disease. Sex Transm Dis. 1985;12(1):25–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Zuma K, Gouws E, Williams B, Lurie M. Risk factors for HIV infection among women in Carletonville, South Africa: migration, demography and sexually transmitted diseases. Int J STD AIDS. 2003;14(12):814–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Nunn AJ, Wagner HU, Kamali A, Kengeya-Kayondo JF, Mulder DW. Migration and HIV-1 seroprevalence in a rural Ugandan population. AIDS. 1995;9(5):503–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Coffee MP, Garnett GP, Mlilo M, Voeten H, Chandiwana S, Gregson S. Patterns of movement and risk of HIV infection in rural Zimbabwe. J Infect Dis. 2005;191:S159–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Lurie M. Migration and AIDS in southern Africa: a review. S Afr J Sci. 2000;96(6):343–7.Google Scholar
  16. 16.
    Morris M, Kretzschmar M. Concurrent partnerships and the spread of HIV. AIDS. 1997;11(5):641–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Morris M, Epstein H. Direct empirical evidence for the role of concurrency in sub-Saharan African heterosexual epidemics: 10 studies, 9 countries and 20 years of data confirm the primary role of concurrent partnerships in HIV transmission. In: 19th International AIDS Conference, Washington, DC, 22–27 Jul 2012.Google Scholar
  18. 18.
    Goodreau SM, Cassels S, Kasprzyk D, Montano DE, Greek A, Morris M. Concurrent partnerships, acute infection and HIV epidemic dynamics among young adults in Zimbabwe. AIDS Behav. 2012;16(2):312–22.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tanser F, Barnighausen T, Hund L, Garnett GP, McGrath N, Newell ML. Effect of concurrent sexual partnerships on rate of new HIV infections in a high-prevalence, rural South African population: a cohort study. Lancet. 2011;378(9787):247–55.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Deane KD, Parkhurst JO, Johnston D. Linking migration, mobility and HIV. Trop Med Int Health. 2010;15(12):1458–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Vissers DCJ, Voeten H, Urassa M, Isingo R, Ndege M, Kumogola Y, et al. Separation of spouses due to travel and living apart raises HIV risk in Tanzanian couples. Sex Transm Dis. 2008;35(8):714–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Mundandi C, Vissers D, Voeten H, Habbema D, Gregson S. No difference in HIV incidence and sexual behaviour between out-migrants and residents in rural Manicaland, Zimbabwe. Trop Med Int Health. 2006;11(5):705–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Voeten HACM, Vissers DCJ, Gregson S, Zaba B, White RG, de Vlas SJ, et al. Strong association between in-migration and HIV prevalence in urban Sub-Saharan Africa. Sex Transm Dis. 2010;37(4):240–3.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Weine SM, Kashuba AB. Labor migration and HIV risk: a systematic review of the literature. AIDS Behav. 2012;16(6):1605–21.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Diez Roux AV. Next steps in understanding the multilevel determinants of health. J Epidemiol Community Health. 2008;62(11):957–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Diez Roux AV, Aiello AE. Multilevel analysis of infectious diseases. J Infect Dis. 2005;191(Suppl 1):S25–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Morris M. Sexual networks and HIV. AIDS. 1997;11(Suppl A):S209–16.PubMedGoogle Scholar
  28. 28.
    Walker PT, Hallett TB, White PJ, Garnett GP. Interpreting declines in HIV prevalence: impact of spatial aggregation and migration on expected declines in prevalence. Sex Transm Infect. 2008;84:II42–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Morris M, Podhisita C, Wawer MJ, Handcock MS. Bridge populations in the spread of HIV/AIDS in Thailand. AIDS. 1996;10(11):1265–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.PubMedCrossRefGoogle Scholar
  31. 31.
    Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Anglewicz P. Migration, marital change, and HIV infection in Malawi. Demography. 2012;49(1):239–65.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Coffee MP, Lurie MN, Garnett GP. Modelling the impact of migration on the HIV epidemic in South Africa. AIDS. 2007;21(3):343–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Lurie MN, Harrison A, Wilkinson D, Abdool Karim SS. Circular migration and sexual networking in rural KwaZulu/Natal: implications for the spread of HIV and other sexually transmitted diseases. Health Transition Rev. 1997;7:17–28.Google Scholar
  35. 35.
    Gelpi-Acosta C, Hagan H, Jenness SM, Wendel T, Neaigus A. Sexual and injection-related risks in Puerto Rican-born injection drug users living in New York City: a mixed-methods analysis. Harm Reduct J. 2011;8:28.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kishamawe C, Vissers DCJ, Urassa M, Isingo R, Mwaluko G, Borsboom G, et al. Mobility and HIV in Tanzanian couples: both mobile persons and their partners show increased risk. AIDS. 2006;20(4):601–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Pouget ER, Kershaw TS, Niccolai LM, Ickovics JR, Blankenship KM. Associations of sex ratios and male incarceration rates with multiple opposite-sex partners: potential social determinants of HIV/STI transmission. Public Health Rep. 2010;125(Suppl 4):70–80.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Simon R. Length biased sampling in etiologic studies. Am J Epidemiol. 1980;111(4):444–52.PubMedGoogle Scholar
  39. 39.
    Greif MJ, Dodoo FN-A. Internal migration to Nairobi’s slums: linking migrant streams to sexual risk behavior. Health Place. 2011;17(1):86–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Lagarde E, van der Loeff MS, Enel C, Holmgren B, Dray-Spira R, Pison G, et al. Mobility and the spread of human immunodeficiency virus into rural areas of West Africa. Int J Epidemiol. 2003;32(5):744–52.PubMedCrossRefGoogle Scholar
  41. 41.
    Pison G, Le Guenno B, Lagarde E, Enel C, Seck C. Seasonal migration: a risk factor for HIV infection in rural Senegal. J Acquir Immune Defic Syndr. 1993;6(2):196–200.PubMedGoogle Scholar
  42. 42.
    Sambisa W, Stokes CS. Rural/urban residence, migration, HIV/AIDS, and safe sex practices among men in Zimbabwe. Rural Sociol. 2006;71(2):183–211.CrossRefGoogle Scholar
  43. 43.
    Weine S, Bahromov M, Loue S, Owens L. HIV sexual risk behavior and multilevel determinants among male labor migrants from Tajikistan. J Immigr Minor Health. 2013;15(4):700–10.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Spiegel PB. HIV/AIDS among conflict-affected and displaced populations: dispelling myths and taking action. Disasters. 2004;28(3):322–39.PubMedCrossRefGoogle Scholar
  45. 45.
    Camlin CS, Hosegood V, Newell ML, McGrath N, Barnighausen T, Snow RC. Gender, migration and HIV in rural KwaZulu-Natal, South Africa. PLoS ONE. 2010;5(7):e11539.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Khan MR, Patnaik P, Brown L, Nagot N, Salouka S, Weir SS. Mobility and HIV-related sexual behavior in Burkina Faso. AIDS Behav. 2008;12(2):202–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Kwena ZA, Camlin C, Shisanya CA, Mwanzo I, Bukusi EA. Short-Term mobility and the risk of HIV infection among married couples in the fishing communities along Lake Victoria, Kenya. PLoS ONE. 2013;8(1):e54523.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Lydie N, Robinson NJ, Ferry B, Akam E, De Loenzien M, Abega S, et al. Mobility, sexual behavior, and HIV infection in an urban population in Cameroon. J Acquir Immune Defic Syndr. 2004;35(1):67–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Cassels S, Manhart L, Jenness SM, Morris M. Short-term mobility and increased partnership concurrency among men in Zimbabwe. PLoS ONE. 2013;8(6):e66342.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Luke N, Clark S, Zulu E. The relationship history calendar: improving the scope and quality of data on youth sexual behavior. Demography. 2011;48:1151–76.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Morris M. Network epidemiology: a handbook for survey design and data collection. Oxford: Oxford University Press; 2004.CrossRefGoogle Scholar
  52. 52.
    Lurie MN, Williams BG, Zuma K, Mkaya-Mwamburi D, Garnett GP, Sweat MD, et al. Who infects whom? HIV-1 concordance and discordance among migrant and non-migrant couples in South Africa. AIDS. 2003;17(15):2245–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Camlin CS, Kwena ZK, Dworkin S, Cohen C, Bukusi EA. “She mixes her business”: HIV transmission and acquisition risks among migrant and highly mobile women in western Kenya. Soc Sci Med. 2013. doi: 10.1016/j.socscimed.2013.11.004.
  54. 54.
    Camlin CS, Kwena ZK, Dworkin SL. Jaboya vs. Jakambi: status, negotiation and HIV risk in the “sex for fish” economy in Nyanza Province, Kenya. AIDS Educ Prev. 2013;25(3):216–31.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Coast E. Local understandings of, and responses to, HIV: rural–urban migrants in Tanzania. Soc Sci Med. 2006;63(4):1000–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Kenyon C, Colebunders R, Voeten H, Lurie M. Peak HIV prevalence: a useful outcome variable for ecological studies. Int J Infect Dis. 2013;17(5):e286–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Wakefield J. Ecologic studies revisited. Annu Rev Public Health. 2008;29:75.PubMedCrossRefGoogle Scholar
  58. 58.
    Koopman JS, Longini IM. The ecological effects of individual exposures and nonlinear disease dynamics in populations. Am J Public Health. 1994;84(5):836–42.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Auchincloss AH, Diez-Roux AV. A new tool for epidemiology: the usefulness of dynamic-agent models in understanding place effects on health. Am J Epidemiol. 2008;168(1):1–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Fenton KA, Johnson AM, McManus S, Erens B. Measuring sexual behaviour: methodological challenges in survey research. Sex Transm Infect. 2001;77(2):84–92.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Egan JE, Frye V, Kurtz SP, Latkin C, Chen MX, Tobin K, et al. Migration, neighborhoods, and networks: approaches to understanding how urban environmental conditions affect syndemic adverse health outcomes among gay, bisexual and other men who have sex with Men. AIDS Behav. 2011;15:S35–50.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Zuma K, Lurie MN, Williams BG, Mkaya-Mwamburi D, Garnett GP, Sturm AW. Risk factors of sexually transmitted infections among migrant and non-migrant sexual partnerships from rural South Africa. Epidemiol Infect. 2005;133(3):421–8.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Feldacker C, Emch M, Ennett S. The who and where of HIV in rural Malawi: exploring the effects of person and place on individual HIV status. Health Place. 2010;16(5):996–1006.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Macintyre S, Ellaway A, Cummins S. Place effects on health: how can we conceptualise, operationalise and measure them? Soc Sci Med. 2002;55(1):125–39.PubMedCrossRefGoogle Scholar
  65. 65.
    VanderWeele TJ. Mediation and mechanism. Eur J Epidemiol. 2009;24(5):217–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Baggaley RF, Fraser C. Modelling sexual transmission of HIV: testing the assumptions, validating the predictions. Curr Opin HIV AIDS. 2010;5(4):269–76.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Cassels S, Clark S, Morris M. Mathematical models for HIV transmission dynamics: tools for social and behavioral science research. J Acquir Immune Defic Syndr. 2008;47(Supplement 1):S34–9.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Garnett GP, Cousens S, Hallett TB, Steketee R, Walker N. Mathematical models in the evaluation of health programmes. Lancet. 2011;378(9790):515–25.PubMedCrossRefGoogle Scholar
  69. 69.
    Cassels S, Goodreau SM. Interaction of mathematical modeling and social and behavioral HIV/AIDS research. Curr Opin HIV AIDS. 2011;6(2):119–23.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Xiridou M, van Veen M, Coutinho R, Prins M. Can migrants from high-endemic countries cause new HIV outbreaks among heterosexuals in low-endemic countries? AIDS. 2010;24(13):2081–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Goodreau SM, Carnegie NB, Vittinghoff E, Lama JR, Sanchez J, Grinsztejn B, et al. What drives the US and Peruvian HIV epidemics in men who have sex with men (MSM)? PLoS ONE. 2012;7(11):e50522.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M. Statnet: software tools for the representation, visualization, analysis and simulation of network data. J Stat Softw. 2008;24(1):1548–7660.Google Scholar
  73. 73.
    Morris M, Kurth AE, Hamilton DT, Moody J, Wakefield S, The Network Modeling Group. Concurrent partnerships and HIV prevalence disparities by race: linking science and public health practice. Am J Public Health. 2009;99(6):1023–31.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Khanna A, Dimitrov D, Goodreau SM. Circular migrations and HIV transmission: a comparison of compartmental and network modeling. In: 7th IAS conference on HIV pathogenesis, treatment and prevention, Kuala Lumpur, Malaysia, 30 Jun–3 Jul 2013.Google Scholar
  75. 75.
    Powers KA, Ghani AC, Miller WC, Hoffman IF, Pettifor AE, Kamanga G, et al. The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. Lancet. 2011;378(9787):256–68.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Verguet S, Lim SS, Murray CJ, Gakidou E, Salomon JA. Incorporating loss to follow-up in estimates of survival among HIV-infected individuals in Sub-Saharan Africa enrolled in antiretroviral therapy programs. J Infect Dis. 2013;207(1):72–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Dombrowski JC, Kent JB, Buskin SE, Stekler JD, Golden MR. Population-based metrics for the timing of HIV diagnosis, engagement in HIV care, and virologic suppression. AIDS. 2012;26(1):77–86.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Tatem AJ, Hemelaar J, Gray RR, Salemi M. Spatial accessibility and the spread of HIV-1 subtypes and recombinants. AIDS. 2012;26(18):2351–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Susan Cassels
    • 1
    • 2
  • Samuel M. Jenness
    • 1
  • Aditya S. Khanna
    • 2
  1. 1.Department of EpidemiologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Global HealthUniversity of WashingtonSeattleUSA

Personalised recommendations