AIDS and Behavior

, Volume 17, Issue 9, pp 3081–3090 | Cite as

Reaching Men Who Have Sex with Men: A Comparison of Respondent-Driven Sampling and Time-Location Sampling in Guatemala City

  • Gabriela Paz-Bailey
  • William Miller
  • Ray W. Shiraishi
  • Jerry O. Jacobson
  • Taiwo O. Abimbola
  • Sanny Y. Chen
Original Paper


We present a comparison of respondent-driven sampling (RDS) and time-location sampling (TLS) for behavioral surveillance studies among men who have sex with men (MSM). In 2010, we conducted two simultaneous studies using TLS (N = 609) and RDS (N = 507) in Guatemala city. Differences in characteristics of the population reached based on weighted estimates as well as the time and cost of recruitment are presented. RDS MSM were marginally more likely to self-report as heterosexual, less likely to disclose sexual orientation to family members and more likely to report sex with women than TLS MSM. Although RDS MSM were less likely than TLS MSM to report ≥2 non-commercial male partners, they were more likely to report selling sex in the past 12 months. The cost per participant was $89 and $121 for RDS and TLS, respectively. Our results suggest that RDS reached a more hidden sub-population of non-gay-identifying MSM than TLS and had a lower implementation cost.


HIV surveillance MSM RDS TLS Hidden populations 


Presentamos una comparación de dos estudios de vigilancia del comportamiento en hombres que tienen relaciones sexuales con hombres (HSH) que utilizaron muestreo dirigido por los participantes (RDS, por sus siglas en inglés) y muestreo por tiempo-lugar (TLS, por sus siglas en inglés). En el 2010, realizamos dos estudios simultáneos usando TLS (N = 609) y RDS (N = 507) en la Ciudad de Guatemala. Se presentaron diferencias en las características de la población alcanzada con base en cálculos ponderados, así como en el tiempo y el costo del reclutamiento. Los HSH del RDS tenían una probabilidad ligeramente más alta de reportarse como heterosexuales, una probabilidad menor de revelar su orientación sexual a los familiares y una probabilidad mayor de reportar relaciones sexuales con mujeres que los HSH del TLS. Aunque los HSH del RDS tenían menos probabilidades que los HSH del TLS de reportar ≥ 2 parejas masculinas no comerciales, ellos tenían más probabilidades de reportar la venta de sexo en los 12 meses anteriores. El costo por participante fue de 89 y 121 dólares en RDS y TLS, respectivamente. Nuestros resultados indican que el RDS alcanzó a una subpoblación más escondida de HSH que no se identificaban como homosexuales comparado con TLS, y tuvo un costo de implementación más bajo.



This work was supported by Tephinet Inc. through a cooperative agreement (#6D43GH000014-05) from the Centers for Disease Control and Prevention and by Del Valle University through a grant with the University of North Carolina at Chapel Hill Center for AIDS Research (CFAR), an NIH funded program P30 AI50410. The authors thank institutions and venue owners involved in the conduct of this study. The authors recognize the contribution of the field staff and technical consultants: Berta Alvarez, Nelson Arambu, Flor de Maria Hernandez, Jose Manuel Aguilar, Sabrina Boyce, Andres Alvarado, Sonia Morales Miranda, Jessica Espana, Norma Zuniga, Cesar Galindo, Andrea Kim, Henry Fisher Raymond, Willi McFarland, and Clare Barrington. The authors are also grateful for the two anonymous reviewers’ valuable comments that greatly improved the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest


  1. 1.
    Bastos FI, Caceres C, Galvao J, Veras MA, Castilho EA. AIDS in Latin America: assessing the current status of the epidemic and the ongoing response. Int J Epidemiol. 2008;37:729–37.PubMedGoogle Scholar
  2. 2.
    Soto RJ, Ghee AE, Nunez CA, Mayorga R, Tapia KA, Astete SG, et al. Sentinel surveillance of sexually transmitted infections/HIV and risk behaviors in vulnerable populations in 5 Central American countries. J Acquir Immune Defic Syndr. 2007;46:101–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Vision Mundial de Guatemala. Informe final del estudio de línea de base: iniciativa intensificación de las acciones de prevención y atención integral del VIH/sida en grupos vulnerables y área prioritarias. Guatemala: Vision Mundial; 2006.Google Scholar
  4. 4.
    Caceres CF. HIV among gay and other men who have sex with men in Latin America and the Caribbean: a hidden epidemic? AIDS. 2002;16(Suppl 3):S23–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Caceres C, Konda K, Pecheny M, Chatterjee A, Lyerla R. Estimating the number of men who have sex with men in low and middle income countries. Sex Transm Infect. 2006;82 (Suppl 3):iii3–9.Google Scholar
  6. 6.
    Goodman LA. Snowball Sampling. Ann Math Stat. 1961;32:148–70.CrossRefGoogle Scholar
  7. 7.
    Erickson B. Some problems of inference from chain data. Social Methodol Res. 1979;10:276–302.CrossRefGoogle Scholar
  8. 8.
    Muhib FB, Lin LS, Stueve A, Miller RL, Ford WL, Johnson WD, et al. A venue-based method for sampling hard-to-reach populations. Public Health Rep. 2001;116(Suppl 1):216–22.PubMedCrossRefGoogle Scholar
  9. 9.
    MacKellar DA, Gallagher KM, Finlayson T, Sanchez T, Lansky A, Sullivan PS. Surveillance of HIV risk and prevention behaviors of men who have sex with men–a national application of venue-based, time-space sampling. Public Health Rep. 2007;122(Suppl 1):39–47.PubMedGoogle Scholar
  10. 10.
    Heckathorn DD. Respondent-driven sampling II: deriving valid population estimates from chain referral samples of hidden populations. Social Probl. 2002;49:11–34.CrossRefGoogle Scholar
  11. 11.
    Heckathorn D. Respondent-driven sampling: a new approach to the study of hidden populations. Social Probl. 1997;44:174–99.CrossRefGoogle Scholar
  12. 12.
    Salganik MJ, Heckathorn D. Sampling and estimation in hidden populations using respondent-driven sampling. Sociol Methodol. 2004;34:193–239.CrossRefGoogle Scholar
  13. 13.
    Gile KJ, Handcock MS. Respondent-driven sampling: an assessment of current methodology. Sociol Methodol. 2010;40:285–327.PubMedCrossRefGoogle Scholar
  14. 14.
    Goel S, Salganik MJ. Assesing respondent-driven sampling. PNAS. 2010;107:6743–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Lu X, Bengtsson L, Britton T, Camitz M, Jun Kim B, Thorson A. The sensitivity of respondent-driven sampling method. J R Stat Soc Ser A. 2012;175:191–216.CrossRefGoogle Scholar
  16. 16.
    Gile KJ. Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. J Am Stat Assoc. 2011;106:135–46.CrossRefGoogle Scholar
  17. 17.
    Gile KJ, Handcock MS. Network model-assisted inference from respondent-driven sampling data. In: arXiv: 1108.0298 [stat.ME]; 2011.Google Scholar
  18. 18.
    Sigman R. Methods for inference from hard-to-reach populations. In: Section on Survey Research Methods, Social Statistics Section, Statistics Without Borders, Committee on Gay and Lesbian Concerns in Statistics Miami Beach, Florida; 2011.Google Scholar
  19. 19.
    Magnani R, Sabin K, Saidel T, Heckathorn D. Review of sampling hard-to-reach and hidden populations for HIV surveillance. AIDS. 2005;19(Suppl 2):S67–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Montealegre JR, Johnston LG, Murrill C, Monterroso E. Respondent driven sampling for HIV biological and behavioral surveillance in Latin America and the Caribbean. AIDS Behav. 2013;17(7):2313-40.Google Scholar
  21. 21.
    Malekinejad M, Johnston LG, Kendall C, Kerr LR, Rifkin MR, Rutherford GW. Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review. AIDS Behav. 2008;12:S105–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Gallagher KM, Sullivan PS, Lansky A, Onorato IM. Behavioral surveillance among people at risk for HIV infection in the U.S.: the National HIV behavioral surveillance system. Public Health Rep. 2007;122(Suppl 1):32–8.PubMedGoogle Scholar
  23. 23.
    Dinenno EA, Oster AM, Sionean C, Denning P, Lansky A. Piloting a system for behavioral surveillance among heterosexuals at increased risk of HIV in the United States. Open AIDS J. 2012;6:169–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Paquette D, De Wit J. Sampling methods used in developed countries for behavioural surveillance among men who have sex with men. AIDS Behav. 2010;14:1252–64.PubMedCrossRefGoogle Scholar
  25. 25.
    Ramirez-Valles J, Heckathorn DD, Vazquez R, Diaz RM, Campbell RT. From networks to populations: the development and application of respondent-driven sampling among IDUs and Latino gay men. AIDS Behav. 2005;9:387–402.PubMedCrossRefGoogle Scholar
  26. 26.
    Yeka W, Maibani-Michie G, Prybylski D, Colby D. Application of respondent driven sampling to collect baseline data on FSWs and MSM for HIV risk reduction interventions in two urban centres in Papua New Guinea. J Urban Health. 2006;83:i60–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnston LG, Sabin K, Mai TH, Pham TH. Assessment of respondent driven sampling for recruiting female sex workers in two Vietnamese cities: reaching the unseen sex worker. J Urban Health. 2006;83:i16–28.PubMedCrossRefGoogle Scholar
  28. 28.
    Kendall C, Kerr LR, Gondim RC, Werneck GL, Macena RH, Pontes MK, et al. An empirical comparison of respondent-driven sampling, time location sampling, and snowball sampling for behavioral surveillance in men who have sex with men, Fortaleza, Brazil. AIDS Behav. 2008;12:S97–104.PubMedCrossRefGoogle Scholar
  29. 29.
    Wei C, McFarland W, Colfax GN, Fuqua V, Raymond HF. Reaching black men who have sex with men: a comparison between respondent-driven sampling and time-location sampling. Sex Transm Infect. 2012;88:622–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Guo Y, Li X, Fang X, Lin X, Song Y, Jiang S, et al. A comparison of four sampling methods among men having sex with men in China: implications for HIV/STD surveillance and prevention. AIDS Care. 2011;23:1400–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Weir SS, Merli MG, Li J, Gandhi AD, Neely WW, Edwards JK, et al. A comparison of respondent-driven and venue-based sampling of female sex workers in Liuzhou, China. Sex Transm Infect. 2012;88(Suppl 2):i95–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Johns B, Baltussen R, Hutubessy R. Programme costs in the economic evaluation of health interventions. Cost Eff Resour Allocation. 2003;1:1.CrossRefGoogle Scholar
  33. 33.
    UNAIDS. Monitoring the Declaration of Commitment on HIV/AIDS: Guidelines on Construction of Core Indicators: 2008 reporting. In. Geneva, Switzerland: UNAIDS/WHO; 2008. pp. 144.Google Scholar
  34. 34.
    Sigman R, Kalton G, Krishna N, Johnson CH, Oster AM. Weighting venue-based sample data for the National HIV Behavioral Surveillance System among men who have sex with men, 2008 In: Joint Statistical Meeting July 30- August 4, 2011. Miami Beach, Florida; 2011.Google Scholar
  35. 35.
    Liu B, Ferraro D, Wilson E, Brick MJ. Trimming Extreme Weights in Household Surveys. In: Joint Statistical Meetings, Section on Survey Research Methods, American Statistical Association; 2004. pp. 3905-3911.Google Scholar
  36. 36.
    Lehtonen R, Pahkinen E. Practical methods for design and analysis of complex surveys. 2nd ed. Chichester: Wiley; 2004.Google Scholar
  37. 37.
    Shackman G. Sample size and design effect. In: American Statistical Association. Albany, NY; 2001.Google Scholar
  38. 38.
    HIVOS. Guía de trabajo objetivo 1 para sub-receptores, implementación del proyecto de RCC FASE 1, 2010-2013. In. Edited by unlimited. Hp. Guatemala city, Guatemala; 2011.Google Scholar
  39. 39.
    Salganik MJ. Variance estimation, design effects, and sample size calculations for respondent-driven sampling. J Urban Health. 2006;83:i98–112.PubMedCrossRefGoogle Scholar
  40. 40.
    Szwarcwald CL, Barbosa-Junior A, Pascom AR, de Souza-Junior PR. Knowledge, practices and behaviours related to HIV transmission among the Brazilian population in the 15–54 years age group, 2004. AIDS. 2005;19(Suppl 4):S51–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Wejnert C, Pham H, Krishna N, Le B, DiNenno E. Estimating design effect and calculating sample size for respondent-driven sampling studies of injection drug users in the United States. AIDS Behav. 2012;16:797–806.PubMedCrossRefGoogle Scholar
  42. 42.
    Johnston LG, Chen YH, Silva-Santisteban A, Raymond HF. An empirical examination of respondent driven sampling design effects among HIV risk groups from studies conducted around the world. AIDS Behav. 2013;17(6):2202–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Goel S, Salganik MJ. Respondent-driven sampling as Markov chain Monte Carlo. Stat Med. 2009;28:2202–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Karon JM, Wejnert C. Statistical methods for the analysis of time-location sampling data. J Urban Health. 2012;89:565–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • Gabriela Paz-Bailey
    • 1
  • William Miller
    • 2
  • Ray W. Shiraishi
    • 3
  • Jerry O. Jacobson
    • 4
  • Taiwo O. Abimbola
    • 3
  • Sanny Y. Chen
    • 3
  1. 1.Division of HIV/AIDS PreventionNational Center for HIV, Hepatitis, STD and Tuberculosis, Centers for Disease Control and PreventionAtlantaUSA
  2. 2.Department of Public HealthUniversity of Chapel HillChapel HillUSA
  3. 3.Division of Global HIV/AIDSCenter for Global Health, Centers for Disease Control and PreventionAtlantaUSA
  4. 4.BogotaColombia

Personalised recommendations