AIDS and Behavior

, Volume 17, Issue 9, pp 2963–2976 | Cite as

Test of a Web-Based Program to Improve Adherence to HIV Medications

  • Rebekah K. Hersch
  • Royer F. Cook
  • Douglas W. Billings
  • Seth Kaplan
  • David Murray
  • Steven Safren
  • Justin Goforth
  • Joy Spencer
Original Paper

Abstract

We evaluated the effectiveness of a web-based version of the Life-Steps intervention combined with modules for stress reduction and mood management, designed to improve medication adherence among HIV infected individuals. 168 HIV+ adults were randomized into either the Life-Steps program or a waitlist control condition. All participants completed a baseline assessment and provided a 2-week electronic pill (MEMS) cap baseline reading. Follow up data collection was conducted at 3, 6 and 9 months. Patients in the web-based Life-Steps condition had significantly higher antiretroviral medication adherence rates than patients in the control group over the nine-month period as measured by the MEMS cap. In addition, analysis of viral load data indicated that the program also resulted in a significant decrease in viral load. These findings indicate that a web-based Life-Steps program can be a useful and implementable tool for helping patients living with HIV maintain medication adherence.

Keywords

Medication adherence Web-based program ART Antiretroviral therapy 

Resumen

Evaluamos la eficacia de una intervención de la versión de Life-Steps basada en el internet, combinada con módulos para la reducción del estrés y manejo de estados de comportamiento, diseñada para mejorar la adherencia a medicamentos entre personas viviendo con VIH. 168 personas viviendo con VIH fueron aleatorizadas al programa Life-Steps o a un grupo de control en lista de espera. Todos los participantes completaron una evaluación inicial y proporcionaron una referencia de los resultados de una prueba de dos semanas del sistema electrónico de monitoreo de medicamentos (MEMS) ubicado en la tapa del frasco de pastillas. Se recopilaron datos subsiguientes a los 3, 6 y 9 meses. Los pacientes asignados a la condición de Life- Steps tenían índices de adherencia al medicamento antirretroviral significativamente mayor que los pacientes en el grupo control durante el periodo de nueve meses de acuerdo al registro del sistema electrónico de monitoreo. Además, cuando se analizaron los datos de la carga viral se observó que el programa también resultó en una disminución significativa de la carga viral. Estos resultados indican que el programa Life-Steps puede ser una herramienta útil y aplicable para ayudar a las personas viviendo con VIH a mantener adherencia a sus medicamentos.

References

  1. 1.
    O’Cleirigh C, Safren S. Optimizing the effects of stress management interventions in HIV. Health Psychol. 2008;27:4–14.CrossRefGoogle Scholar
  2. 2.
    Safren SA, Otto MW, Worth J, et al. Two strategies to increase adherence to HIV antiretroviral medication: life-steps and medication monitoring. Behav Res Ther. 2001;39:1151–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Safren SA, O’Cleirigh CM, Tan JY, et al. A randomized controlled trial of cognitive behavioral therapy for adherence and depression (CBT-AD) in HIV-infected individuals. Health Psychol. 2009;28:1–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Carpenter CJ, Fischl MA, Hammer SM, et al. Antiretroviral therapy for HIV infection in 1997: updated recommendations of the international AIDS society-USA panel. JAMA. 1997;277:1962–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Flexner C. HIV-protease inhibitors. N Engl J Med. 1998;338(18):1281–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Goebel FD. Combination therapy from a clinician’s perspective. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10:S62–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson MA, Aberg JA, Cahn P, et al. Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel. JAMA. 2010;304:321–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Catz SL, Kelly JA, Bogart LM, et al. Patterns, correlates a barriers to medication adherence among persons prescribed new treatments for HIV disease. Health Psychol. 2000;19:124–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Hinkin CH, Barclay TR, Castellon SA, et al. Drug use and medication adherence among HIV-1 infected individuals. AIDS Behav. 2007;11(2):185–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Safren SA, O’Cleirigh CM, Bullis JR, Otto MW, Stein MD, Pollack MH. Cognitive behavioral therapy for adherence and depression (CBT-AD) in HIV-infected injection drug users: a randomized controlled trial. J Consult Clin Psychol. 2012;80(3):404–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Scott-Sheldon LAJ, Carey MP, Vanable PA, Senn TE, Coury-Doniger P, Urban MA. Alcohol consumption, drug use, and condom use among STD clinic patients. J Stud Alcohol Drugs. 2009;70:762–70.PubMedGoogle Scholar
  12. 12.
    Safren SA, Otto MW, Worth J. Life-steps: applying cognitive-behavioral therapy to patient adherence to HIV medication treatment. Cogn Behav Pract. 1999;6:332–41.CrossRefGoogle Scholar
  13. 13.
    Safren SA, Hendriksen ES, DeSousa N, Boswell SL, Mayer KH. Use of an on-line pager system to increase adherence to antiretroviral medications. AIDS Care. 2003;15:787–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Safren SA, Hendriksen ES, Mayer KH, Pickard R, Otto MW. Cognitive behavioral therapy for HIV medication adherence and depression. Cogn Behav Pract. 2004;11:415–23.CrossRefGoogle Scholar
  15. 15.
    Simoni JS, Amico KR, Pearson CR. Malow RM Strategies for promoting adherence to antiretroviral therapy: a review of the literature. Cogn Behav Pract. 2008;10:515–21.Google Scholar
  16. 16.
    Cook RF, Billings DW, Hersch RK, Back A, Hendrickson A. A field test of a web-based workplace health promotion program to improve dietary practices, reduce stress, and increase physical activity: randomized controlled trial. J Med Internet Res. 2007;9:e17.PubMedCrossRefGoogle Scholar
  17. 17.
    Portnoy DB, Scott-Sheldon LAJ, Johnson BT, Carey MP. Computer-delivered interventions for health promotion and behavioral risk reduction: a meta-analysis of 75 randomized controlled trials, 1988–2007. Prev Med. 2008;47:3–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams GC, Lynch MF, Glasgow RE. Computer-assisted intervention improves patient-centered diabetes care by increasing autonomy support. Health Psychol. 2007;26:728–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Noar SM, Black HG, Pierce LB. Efficacy of computer technology-based HIV prevention interventions: a meta-analysis. AIDS. 2009;23:107–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Fisher JD, Amico KR, Fisher WA, et al. Computer-based intervention in HIV clinical care setting improves antiretroviral adherence: the LifeWindows project. AIDS Behav. 2011;15(8):1635–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Billings DW, Cook RF, Hendrickson A, Dove DC. A web-based approach to managing stress and mood disorders in the workforce. J Occup Environ Med. 2008;50:960–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Chesney MA, Ickovics JR, Chambers DB, et al. Self-reported adherence to antiretroviral medications among participants in HIV clinical trials: the AACTG adherence instruments. AIDS Care. 2000;12:255–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Risser J, Jacobson TA, Kripalani S. Development and psychometric evaluation of the self-efficacy for appropriate medication use scale (SEAMS) in low-literacy patients with chronic illness. J Nurs Meas. 2007;15:207–23.CrossRefGoogle Scholar
  24. 24.
    Pakenham KI, Rinaldis M. Development of the HIV/AIDS stress scale. Psychol Health. 2002;17:203–19.CrossRefGoogle Scholar
  25. 25.
    Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54:1063–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Cook RF, Bernstein A, Andrews C. Assessing drug use in the workplace: a comparison of self-report, urinalysis and hair analysis. NIDA research monograph 167. Rockville: National Institute on Drug Abuse; 1997.Google Scholar
  27. 27.
    Cook RF, Back AS, Trudeau J, McPherson TL. Integrating substance abuse prevention into health promotion programs in the workplace: a social-cognitive intervention targeting the mainstream user. In: Bennett JB, Lehman WEK, editors. Preventing workplace substance abuse: beyond drug testing to wellness. Washington, D.C.: APA Books; 2003. p. 97–134.CrossRefGoogle Scholar
  28. 28.
    Cook RF, Hersch RK, Back AS, McPherson TL. The prevention of substance abuse among construction workers: a field test of a social cognitive program. J Prim Prev. 2004;25:337–58.CrossRefGoogle Scholar
  29. 29.
    Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. New York: Springer; 2010.CrossRefGoogle Scholar
  30. 30.
    Schafer JL. Analysis of incomplete multivariate data. London: Chapman and Hall; 1997.CrossRefGoogle Scholar
  31. 31.
    Centers for Disease Control. Estimated HIV incidence among adults and adolescents in the United States, 2007–2010. HIV Surveillance Supplemental Report. 2012;17:4. http://www.cdc.gov/hiv/topics/surveillance/resources/reports/#supplemental.
  32. 32.
    Government of the District of Columbia, Department of Health. Annual report 2011: HIV/AIDS, hepatitis, STD, and TB epidemiology of the District of Columbia. Washington, DC: Department of Health: HIV/AIDS, Hepatitis, STD, and TB Administration (HAHSTA); 2012.Google Scholar
  33. 33.
    Centers for Disease Control. Methamphetamine use and HIV risk behaviors among heterosexual men -preliminary results from five northern California counties, December 2002–November 2003. MMWR. 2006;55:273–7.Google Scholar
  34. 34.
    Molitor F, Truax SR, Ruiz JD, et al. Association of methamphetamine use during sex with risky sexual behaviors and HIV infection among non-injection drug users. West J Med. 1998;168:93–7.PubMedGoogle Scholar
  35. 35.
    Royce RA, Sena A, Cates W Jr, et al. Sexual transmission of HIV. N Engl J Med. 1997;336:1072–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Bangsberg DR, Hecht FM, Charlebois ED, et al. Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an indigent population. AIDS. 2000;14:357–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Shi L, Liu J, Fonseca V, Walker P, Kalsekar A, Pawaskar M. Correlations between adherence rates measured by MEMS and self-reported questionnaires: a meta-analysis. Health Qual Life Outcomes. 2010;8:99.PubMedCrossRefGoogle Scholar
  38. 38.
    Wagner GJ. Predictors of antiretroviral adherence as a measure by self-report, electronic monitoring, and medication diaries. AIDS Patient Care STDS. 2002;16(12):599–608.PubMedCrossRefGoogle Scholar
  39. 39.
    Deschamps AE, Van Wijngaerden E, Denhaerynck K, De Geest S, Vandamme AE. Use of electronic monitoring induces a 40-day intervention effect in HIV patients. J Acquir Immune Defic Syndr. 2006;43:247–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Zickuhr K, Smith, A. Digital differences. Washington, DC: Pew Research Center’s Internet and American Life Project. 2012. pewinternet.org/Reports/2012/Digital-differences.aspx.Google Scholar
  41. 41.
    Pop-Eleches C, Thirumurthy H, Habyarimana JP, et al. Mobile phone technologies improve adherence to antiretroviral treatment in a resource-limited setting: a randomized controlled trial of text message reminders. AIDS. 2011;25(6):825–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rebekah K. Hersch
    • 1
  • Royer F. Cook
    • 1
  • Douglas W. Billings
    • 1
  • Seth Kaplan
    • 2
  • David Murray
    • 3
  • Steven Safren
    • 4
  • Justin Goforth
    • 5
  • Joy Spencer
    • 1
  1. 1.ISA Associates, Inc.AlexandriaUSA
  2. 2.Department of PsychologyGeorge Mason UniversityFairfaxUSA
  3. 3.Division of Epidemiology, Statistics, and Prevention ResearchEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthRockvilleUSA
  4. 4.Massachusettes General Hospital, Harvard Medical SchoolBostonUSA
  5. 5.Whitman Walker HealthWashingtonUSA

Personalised recommendations