AIDS and Behavior

, Volume 17, Issue 7, pp 2313–2340 | Cite as

Respondent Driven Sampling for HIV Biological and Behavioral Surveillance in Latin America and the Caribbean

  • Jane R. Montealegre
  • Lisa G. JohnstonEmail author
  • Christopher Murrill
  • Edgar Monterroso
Substantive Review


Since 2005, respondent driven sampling (RDS) has been widely used for HIV biological and behavioral surveillance surveys (BBSS) in Latin America and the Caribbean (LAC). In this manuscript, we provide a focused review of RDS among hard-to-reach high-risk populations in LAC and describe their principal operational, design, and analytical considerations. We reviewed published and unpublished reports, protocols, and manuscripts for RDS studies conducted in LAC between January 1, 2005 and December 31, 2011. We abstracted key operational information and generated summary statistics across all studies. Between 2005 and 2011, 87 RDS studies were conducted in 15 countries in LAC (68 % in South America, 18 % in Mexico and Central America, and 14 % in the Caribbean). The target populations were primarily men who have sex with men (43 %), sex workers (29 %), and drug users (26 %). Study considerations included establishing clear eligibility criteria, measuring social network sizes, collecting specimens for biological testing, among others. Most of the reviewed studies are the first in their respective countries to collect data on hard-to-reach populations and the first attempt to use a probability-based sampling method. These RDS studies allowed researchers and public health practitioners in LAC to access hard-to-reach HIV high-risk populations and collect valuable data on the prevalence of HIV and other infections, as well as related risk behaviors.


HIV/AIDS Respondent driven sampling Surveillance Latin America Caribbean Key populations at risk 


Desde el 2005, el muestreo dirigido por participantes (o respondent driven sampling, RDS) se ha utilizado ampliamente en Latinoamérica y el Caribe (LAC) para las encuestas de vigilancia biológica y de comportamientos de riesgo para el VIH. En este artículo, ofrecemos una revisión enfocada de los estudios RDS que se han realizado en LAC entre las poblaciones de alto riesgo y difícil de acceder y describe retos operacionales, de diseño, y analíticos y sus consideraciones. Examinamos informes publicados e inéditos, protocolos, y manuscriptos sobre los estudios RDS realizados en LAC entre enero 1, 2005 a diciembre 31, 2011. Resumimos la información operacional clave de todos los estudios y generamos estadísticas sumarias. Encontramos que entre el 2005 al 2011 se realizaron 87 estudios RDS en 15 países de LAC (68 % en Sudamérica, 18 % en México y Centroamérica, y 14 % en el Caribe). Las poblaciones objetivas fueron principalmente hombres que tienen sexo con hombres (43 %), trabajadoras sexuales (29 %) y usuarios de drogas (26 %). Los desafíos principales incluyeron el establecimiento de criterios de elegibilidad, la medición del tamaño de la red social, la toma de muestras para las pruebas biológicas, entre otros. La mayoría de los estudios revisados son los primeros en sus respectivos países que recopilan datos sobre las poblaciones de difícil acceso y el primer intento de utilizar un método de muestreo basado en la probabilidad. Estos estudios RDS permitieron a los investigadores y a los profesionales de salud pública accesar a poblaciones de alto riesgo de difícil acceso y recolectar valiosos datos sobre la prevalencia del VIH y de otras infecciones, así como riesgos de conducta relacionados.



We would like to express our gratitude to the organizations and investigators who generously shared their operational information with us, especially Sonia Morales-Miranda, Maria Elena Guardado, and Jerry Jacobson. We also would like to thank Abraham Miranda, Amy Drake, and Gabriela Paz-Bailey for their assistance in the conception and development of this manuscript. JRM is currently supported by a UTHealth Innovation for Cancer Prevention Research Postdoctoral Fellowship (The University of Texas School of Public Health—Cancer Prevention and Research Institute of Texas Grant # RP101503). The findings and conclusions of this paper are those of the authors and do not necessarily represent the official position of the U.S. Centers for Disease Control and Prevention or the Cancer Prevention and Research Institute of Texas.


  1. 1.
    UNAIDS. AIDS epidemic update. 2010. Accessed 1 June 2012.
  2. 2.
    US Agency for International Development (USAID). HIV/AIDS Health Profile-Latin America and the Caribbean. 2011. Accessed 22 Mar 2012.
  3. 3.
    Family Health International. Behavioral surveillance surveys (BSS): Guidelines for repeated behavioral surveys in populations at risk for HIV, Arlington. 2000.Google Scholar
  4. 4.
    Heckathorn DD. Respondent-driven sampling: a new approach to the study of hidden populations. Soc Probl. 1997;44(2):174–99.CrossRefGoogle Scholar
  5. 5.
    Heckathorn DD, Semaan S, Broadhead RS, Hughes JJ. Extensions of respondent-driven sampling: a new approach to the study of injection drug users aged 18–25. AIDS Behav. 2002;6(1):55–67.CrossRefGoogle Scholar
  6. 6.
    Salganik MJ, Heckathorn DD. Sampling and estimation of hidden populations using respondent driven sampling. Sociol Methodol. 2004;34(1):193–240.CrossRefGoogle Scholar
  7. 7.
    Johnston LG, Sabin K, Prybylski D. Update for sampling most-at-risk and hidden populations for HIV biological and behavioral surveillance. J HIV/AIDS Surveill Epidemiol. 2010; 2(1).Google Scholar
  8. 8.
    Heckathorn DD. Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Soc Probl. 2002;49(1):11–34.CrossRefGoogle Scholar
  9. 9.
    Heckathorn DD. Extensions of respondent-driven sampling: analyzing continuous variables and controlling for differential recruitment. Sociol Methodol. 2007;37(1):151–207.CrossRefGoogle Scholar
  10. 10.
    Malekinejad M, Johnston LG, Kendall C, Kerr LR, Rifkin MR, Rutherford GW. Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review. AIDS Behav. 2008;12(Suppl 4):S105–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Johnston LG, Malekinejad M, Kendall C, Iuppa IM, Rutherford GW. Implementation challenges to using respondent-driven sampling methodology for HIV biological and behavioral surveillance: field experiences in international settings. AIDS Behav. 2008;12(Suppl 4):S131–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Soto RJ, Ghee AE, Nunez CA, et al. Sentinel surveillance of sexually transmitted infections/HIV and risk behaviors in vulnerable populations in 5 Central American countries. J Acquir Immune Defic Syndr. 2007;46(1):101–11.PubMedGoogle Scholar
  13. 13.
    Magis-Rodriguez C, Brouwer KC, Morales S, et al. HIV prevalence and correlates of receptive needle sharing among injection drug users in the Mexican-U.S. border city of Tijuana. J Psychoact Drugs. 2005;37(3):333–9.CrossRefGoogle Scholar
  14. 14.
    Montealegre JR, Johnston LG, Drake A, et al. Overcoming challenges in the implementation and analysis of respondent driven sampling: deliberations from the respondent driven sampling practical implementation. In Workshop for the Dominican Republic and Latin America, Santo Domingo. 2011.Google Scholar
  15. 15.
    Johnston LG, Whitehead S, Simic-Lawson M, Kendall C. Formative research to optimize respondent-driven sampling surveys among hard-to-reach populations in HIV behavioral and biological surveillance: lessons learned from four case studies. AIDS Care. 2010;22(6):784–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnston LG, Paz Bailey G, Morales-Miranda S, Morgan M, Alvarez B, Monterroso E. High prevalence of M. genitalium among female sex workers in Honduras: implications for the spread of HIV and other sexually transmitted infections. Int J STD AIDS. 2012;23(1):5–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Carballo-Dieguez A, Balan I, Marone R, et al. Use of respondent driven sampling (RDS) generates a very diverse sample of men who have sex with men (MSM) in Buenos Aires, Argentina. PLoS ONE. 2011;6(11):e277447.CrossRefGoogle Scholar
  18. 18.
    Gile KJ, Handcock MS. Respondent-driven sampling: an assessment of current methodology. Sociol Methodol. 2010;40(1):285–327.PubMedCrossRefGoogle Scholar
  19. 19.
    Toledo L, Codeco CT, Bertoni N, et al. Putting respondent-driven sampling on the map: insights from Rio de Janeiro, Brazil. J Acquir Immune Defic Syndr. 2011;57(Suppl 3):S136–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnston LG. Conducting respondent driven sampling (RDS) studies in diverse settings: a training manual for planning RDS studies. Centers for Disease Control and Prevention, Atlanta and Family Health International, Arlington. 2007. Accessed 1 June 2012.
  21. 21.
    Salganik MJ. Variance estimation, design effects, and sample size calculations for respondent-driven sampling. J Urban Health. 2006;83(Suppl 6):i98–112.PubMedCrossRefGoogle Scholar
  22. 22.
    Wejnert C, Pham H, Krishna N, Le B, DiNenno E. Estimating design effect and calculating sample size for respondent-driven sampling studies of injection drug users in the United States. AIDS Behav. 2012;16(4):797–806.PubMedCrossRefGoogle Scholar
  23. 23.
    White RG, Lansky A, Goel S, et al. Respondent driven sampling—where are we and where should we be going? Sex Transm Infect. 2012;88:397–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim EJ, Creswell J, Guardado ME, et al. Correlates of bisexual behaviors among men who have sex with men in El Salvador. AIDS Behav. 2012. doi: 10.1007/s10461-012-0152-y.
  25. 25.
    Paz-Bailey G, Jacobson JO, Guardado ME, et al. How many men who have sex with men and female sex workers live in El Salvador? Using respondent-driven sampling and capture-recapture to estimate population sizes. Sex Transm Infect. 2011;87(4):279–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Frost SD, Brouwer KC, Firestone Cruz MA, et al. Respondent-driven sampling of injection drug users in two U.S.-Mexico border cities: recruitment dynamics and impact on estimates of HIV and syphilis prevalence. J Urban Health. 2006;83(Suppl 6):83–97.CrossRefGoogle Scholar
  27. 27.
    Pando M, Marone R, Balan I, et al. HIV and STI prevalence among men who have sex with men (MSM) recruited through respondent driven sampling (RDS) in Buenos Aires, Argentina. Retrovirology. 2009;6(Suppl 3):P103.CrossRefGoogle Scholar
  28. 28.
    Barbosa Junior A, Pascom AR, Szwarcwald CL, Kendall C, McFarland W. Transfer of sampling methods for studies on most-at-risk populations (MARPs) in Brazil. Cad Saude Publica. 2011;27(Suppl 1):S36–44.PubMedGoogle Scholar
  29. 29.
    Tun W, de Mello M, Pinho A, Chinaglia M, Diaz J. Sexual risk behaviours and HIV seroprevalence among male sex workers who have sex with men and non-sex workers in Campinas, Brazil. Sex Transm Infect. 2008;84(6):455–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kendall C, Kerr LR, Gondim RC, et al. An empirical comparison of respondent-driven sampling, time location sampling, and snowball sampling for behavioral surveillance in men who have sex with men, Fortaleza, Brazil. AIDS Behav. 2008;12(4 Suppl):S97–104.PubMedCrossRefGoogle Scholar
  31. 31.
    Salani Mota RM, Sansigolo Kerr LR, Kendall C, et al. Reliability of self-report of HIV status among men who have sex with men in Brazil. J Acquir Immune Defic Syndr. 2011;57(Suppl 3):S153–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Bermudez-Aza EH, Kerr LR, Kendall C, et al. Antiretroviral drug resistance in a respondent-driven sample of HIV-infected men who have sex with men in Brazil. J Acquir Immune Defic Syndr. 2011;57(Suppl 3):S186–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Damacena GN, Szwarcwald CL, de Souza Junior PR, Dourado I. Risk factors associated with HIV prevalence among female sex workers in 10 Brazilian cities. J Acquir Immune Defic Syndr. 2011;57(Suppl 3):S144–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Damacena GN, Szwarcwald CL, Barbosa Junior A. Implementation of respondent-driven sampling among female sex workers in Brazil, 2009. Cad Saude Publica. 2011;27(Suppl 1):S45–55.PubMedGoogle Scholar
  35. 35.
    Szwarcwald CL, de Souza Junior PR, Damacena GN, Junior AB, Kendall C. Analysis of data collected by RDS among sex workers in 10 Brazilian cities, 2009: estimation of the prevalence of HIV, variance, and design effect. J Acquir Immune Defic Syndr. 2011;57(Suppl 3):S129–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Silva-Santisteban A, Raymond HF, Salazar X, et al. Understanding the HIV/AIDS epidemic in transgender women of Lima, Peru: results from a sero-epidemiologic study using respondent driven sampling. AIDS Behav. 2011;16(4):872–81.CrossRefGoogle Scholar
  37. 37.
    Johnston LG, Caballero TV, Dolores Y, Vales HM. HIV, Hepatitis B/C and syphilis prevalence and risk behaviors among gay/trans/men who have sex with men, Dominican Republic. Int J STD AIDS. (in press). Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jane R. Montealegre
    • 1
    • 2
  • Lisa G. Johnston
    • 3
    • 5
    Email author
  • Christopher Murrill
    • 4
  • Edgar Monterroso
    • 4
  1. 1.Division of Epidemiology, Human Genetics, and Environmental SciencesThe University of Texas School of Public HealthHoustonUSA
  2. 2.Dan L. Duncan Cancer CenterBaylor College of MedicineHoustonUSA
  3. 3.Department of Global Community Health and Behavioral SciencesTulane University School of Public Health and Tropical MedicineNew OrleansUSA
  4. 4.Division of Global HIV/AIDSU.S. Centers for Disease Control and PreventionAtlantaUSA
  5. 5. Global Health Sciences, University of California, San FranciscoSan FranciscoUSA

Personalised recommendations