AIDS and Behavior

, 15:1570 | Cite as

Changes in the Prevalence of Injection Drug Use Among Adolescents and Young Adults in Large U.S. Metropolitan Areas

  • Sudip Chatterjee
  • Barbara Tempalski
  • Enrique R. Pouget
  • Hannah L. F. Cooper
  • Charles M. Cleland
  • Samuel R. Friedman
Original Paper

Abstract

Young injection drug users (IDUs) are at risk for acquiring blood-borne diseases like HIV and Hepatitis C. Little is known about the population prevalence of young IDUs. We (1) estimate annual population prevalence rates of young IDUs (aged 15–29) per 10,000 in 95 large U.S. metropolitan statistical areas (MSAs) from 1992 to 2002; (2) assess the validity of these estimates; and (3) explore whether injection drug use among youth in these MSAs began to rise after HAART was discovered. A linear mixed model (LMM) estimated the annual population prevalence of young IDUs in each MSA and described trends therein. The population prevalence of IDUs among youths across 95 MSAs increased from 1996 (mean = 95.64) to 2002 (mean = 115.59). Additional analyses of the proportion of young IDUs using health services suggest this increase may have continued after 2002. Harm reduction and prevention research and programs for young IDUs are needed.

Keywords

Injection drug use Adolescents Young adults Metropolitan statistical area Prevalence Harm reduction 

Resumen

Jóvenes usuarios de drogas inyectables (UDI) están en riesgo de adquirir enfermedades de transmisión sanguínea como el VIH y la hepatitis C. Poco se sabe sobre la prevalencia de la población de jóvenes usuarios de drogas inyectables. Nosotros (1) estimamos las tasas anuales de prevalencia en la población de UDI jóvenes (de 15 a 29) por 10.000 en 95 grandes áreas metropolitanas de EE.UU. estadística (MSA) de 1992 a 2002; (2) evaluar la validez de estas estimaciones, y explorar (3) si el uso de drogas inyectables entre los jóvenes en estas zonas metropolitanas comenzaron a subir después de TARGA fue descubierto. Un modelo lineal mixto (LMM) estimó la prevalencia anual de la población de jóvenes que cada zona metropolitana y se describe su evolución. La prevalencia en la población de usuarios de drogas inyectables entre los jóvenes a través de 95 zonas metropolitanas aumentó de 1996 (media = 95,64) y 2002 (media = 115.59). Análisis adicionales de la proporción de consumidores por vía parenteral jóvenes que utilizan los servicios de salud sugieren que este aumento puede haber continuado después de 2002. La reducción del daño y de investigación y programas de prevención para los CDI son necesarios.

Supplementary material

10461_2011_9992_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1482 kb)

References

  1. 1.
    Miller CL, Spittal PM, LaLiberte N, Li K, Tyndall MW, O’Shaughnessy MV, Schechter MT. Females experiencing sexual and drug vulnerabilities are at elevated risk for HIV infection among youth who use injection drugs. J Acquir Immune Defic Syndr. 2002;30:335–41.PubMedGoogle Scholar
  2. 2.
    Miller CL, Tyndall M, Spittal P, Li K, LaLiberte N, Schechter MT. HIV incidence and associated risk factors among young injection drug users. AIDS. 2002;16:491–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Fennema JS, Van Ameijden EJ, Van Den Hoek A, Coutinho RA. Young and recent-onset injecting drug users are at higher risk for HIV. Addiction. 1997;92:1457–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Doherty MC, Garfein RS, Monterroso E, Brown D, Vlahov D. Correlates of HIV infection among young adult short-term injection drug users. AIDS. 2000;14:717–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Judd A, Hickman M, Jones S, McDonald T, Parry JV, Stimson JV, Hall AJ. Incidence of hepatitis C virus and HIV among new injecting drug users in London: prospective cohort study. BMJ. 2005;330:24–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Hahn JA, Page-Shafer K, Lum PJ, Bourgois P, Stein E, Evans JL, Busch MP, Tobler LH, Phelps B, Moss AR. Hepatitis C virus seroconversion among young injection drug users: relationships and risks. J Infect Dis. 2002;186:1558–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Des Jarlais DC, Diaz T, Perlis T, Vlahov D, Maslow C, Latka M, Rockwell R, Edwards V, Friedman SR, Monterroso E, Williams I, Garfein R. Variability in the incidence of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infection among young injecting drug users in New York City. Am J Epidemiol. 2003;157:467–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Hagan H, Thiede H, Weiss NS, Hopkins SG, Duchin JS, Alexander ER. Sharing of drug preparation equipment as a risk factor for hepatitis C. Am J Public Health. 2001;91(1):42–6.PubMedGoogle Scholar
  9. 9.
    Garfein RS, Doherty MC, Monterroso ER, Thomas DL, Nelson KE, Vlahov D. Prevalence and incidence of hepatitis C virus infection among young adult injection drug users. J Acquir Immune Defic Syndr Hum Retrovir. 1998;18(Suppl 1):S11–9.Google Scholar
  10. 10.
    Hahn JA, Page-Shafer K, Lum PJ, Ochoa K, Moss AR. Hepatitis C virus infection and needle exchange use among young injection drug users in San Francisco. Hepatology. 2001;34:180–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Kral AH, Lorvick J, Edlin BR. Sex- and drug-related risk among populations of younger and older injection drug users in adjacent neighborhoods in San Francisco. J Acquir Immune Defic Syndr. 2000;24:162–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Thorpe L, Ouellet L, Levy J, Williams I, Monterroso E. Hepatitis C virus infection: prevalence, risk factors, and prevention opportunities among young injection drug users in Chicago, 1997–1999. J Infect Dis. 2000;182:1588–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Ochoa KC, Hahn JA, Seal KH, Moss AR. Overdosing among young injection drug users in San Francisco. Addict Behav. 2001;26:453–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Cooper HLF, Brady JE, Friedman SR, Tempalski B, Gostnell K, Flom PL. Estimating the prevalence of injection drug use among Black and White adults in large U.S. metropolitan areas over time (1992–2002): estimation methods and prevalence trends. J Urban Health. 2008;85:826–56.PubMedCrossRefGoogle Scholar
  15. 15.
    Wright D, Gfroerer J, Epstein J. The use of external data sources and ratio estimation to improve estimates of hardcore drug use from the NHSDA. NIDA research monograph, vol. 167. Rockville: Office of Applied Studies, Substance Abuse and Mental Health Services Administration; 1997.Google Scholar
  16. 16.
    Wright D, Gfroerer J, Epstein J. Ratio estimation of hardcore drug use. J Off Stat. 1997;13:401–16.Google Scholar
  17. 17.
    Archibald CP, Jayaraman GC, Major C, Patrick DM, Houston SM, Sutherland D. Estimating the size of hard-to-reach populations: a novel method using HIV testing data compared to other methods. AIDS. 2001;15(Suppl 3):S41–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Korf D, Reijneveld S, Toet J. Estimating the number of heroin users: a review of methods and empirical findings from the Netherlands. Int J Addict. 1994;29:1393–417.PubMedGoogle Scholar
  19. 19.
    Galea S, Nandi A, Vlahov D. The social epidemiology of substance use. Epidemiol Rev. 2004;26:36–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Friedman SR, Pouget ER, Chatterjee S, Cleland CM, Tempalski B, Brady JE, Cooper HLF. Do drug arrest deter drug use? Am J Public Health. 2011;101:344–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Office of Management and Budget. Standards for defining metropolitan and micropolitan statistical areas. Fed Regist. 2000;65:82228–38.Google Scholar
  22. 22.
    U.S. Bureau of the Census. State and metropolitan area data book, 1997–1998. Washington, DC: US Bureau of the Census; 1998.Google Scholar
  23. 23.
    Pierce T. Gen-X Junkie: ethnographic research with young white heroin users in Washington, DC. Subst Use Misuse. 1999;34:2095–114.PubMedCrossRefGoogle Scholar
  24. 24.
    Wallace R, Wallace D. Socioeconomic determinants of health: community marginalization and the diffusion of disease and disorder in the United States. BMJ. 1997;314:1341–5.PubMedGoogle Scholar
  25. 25.
    US Department of Health and Human Services, Substance Abuse and Mental Health Services Administration, Office of Applied Studies. Treatment episode data set, 1992–2007 (concatenated). Data Collection Description; 2009.Google Scholar
  26. 26.
    Beltrami J, Usman HR, Habarta N. HIV counseling and testing at CDC-funded sites, United States, Puerto Rico, and the U.S. Virgin Islands, 2005. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2010.Google Scholar
  27. 27.
    Brady JE, Friedman SR, Cooper HLF, Flom PL, Tempalski B, Gostnell K. Estimating the prevalence of injection drug users in the US and in large US metropolitan areas from 1992–2002. J Urban Health. 2008;85:323–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Friedman SR, Tempalski B, Cooper HL, et al. Estimating numbers of injecting drug users in metropolitan areas for structural analyses of community vulnerability and for assessing relative degrees of service provision for injecting drug users. J Urban Health. 2004;81(3):377–400.PubMedCrossRefGoogle Scholar
  29. 29.
    Holmberg S. The estimated prevalence and incidence of HIV in 96 large US metropolitan areas. Am J Public Health. 1996;86(5):642–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Census USBot. Population estimates program dataset: U.S. Bureau of the Census; 2009.Google Scholar
  31. 31.
    Longford N. Random coefficient models. Oxford: Clarendon Press; 1993.Google Scholar
  32. 32.
    Singer JD, Willett JB. Applied longitudinal data analysis: modeling change and event occurrence. New York: Oxford University Press; 2003.Google Scholar
  33. 33.
    Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer; 2000.Google Scholar
  34. 34.
    Fitzmaurice GM, Ravichandran C. A primer in longitudinal data analysis. Circulation. 2008;118:2005–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Hedeker D. An introduction to growth modeling. In: Kaplan D, editor. Quantitative methodology for the social sciences. Thousand Oaks: Sage Publications; 2004.Google Scholar
  36. 36.
    Pedhazur EJ, Schmelkin LP. Measurement, design and analysis: an integrated approach. Hillsdale: Lawrence Erlbaum Associates; 1991. p. 73–6.Google Scholar
  37. 37.
    European Monitoring Centre for Drugs and Drug Addiction. EMCDDA Stat Bull. http://stats05.emcdda.europa.eu/en/home-en.html (2005). Accessed 18 January 2010.
  38. 38.
    U.S. Department of Health and Human Services, National Center for Health Statistics. Multiple cause of death file, 1992–2002 (computer file). U.S. Department of Health and Human Services, National Center for Health Statistics; 2004.Google Scholar
  39. 39.
    Nunnally JC, Bernstein IH. Psychometric theory. 3rd ed. New York: McGraw Hill; 1994.Google Scholar
  40. 40.
    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Erlbaum; 1988.Google Scholar
  41. 41.
    Musto DF. Opium, cocaine, and marijuana in American history. Sci Am. 1991;265:40–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Tracy SW, Acker CJ, editors. Altering American consciousness: the history of alcohol and drug use in the United States. Amherst: University of Massachusetts; 2004. p. 1800–2000.Google Scholar
  43. 43.
    The Washington Post/Kaiser Family Foundation/Harvard University. National survey on the public’s attitudes towards HIV/AIDS in the US and the World, July 2002. www.kff.org.
  44. 44.
    Crepaz N, Hart TA, Marks G. Highly active antiretroviral therapy and sexual risk behavior. JAMA. 2004;292(2):224–36. doi:10.1001/jama.292.2.224.PubMedCrossRefGoogle Scholar
  45. 45.
    Firestone M, Fischer B. A qualitative exploration of prescription opioid injection among street-based drug users in Toronto: behaviours, preferences and drug availability. Harm Reduct J. 2008;5:30.PubMedCrossRefGoogle Scholar
  46. 46.
    Latka M, Ahern J, Garfein RS, Ouellet L, Kerndt P, Morse P, et al. Prevalence, incidence, and correlates of chlamydia and gonorrhea among young adult injection drug users. J Subst Abuse. 2001;13:73–88.PubMedCrossRefGoogle Scholar
  47. 47.
    Thorpe LE, Ouellet LJ, Hershow R, Bailey SL, Williams IT, Williamson J, et al. Risk of hepatitis C virus infection among young adult injection drug users who share injection equipment. Am J Epidemiol. 2002;155:645–53.PubMedCrossRefGoogle Scholar
  48. 48.
    UNODC and the Global Youth Network. HIV prevention among young injecting drug users. Vienna: UNODC; 2004. http://www.unodc.org/pdf/youthnet/handbook_hiv_english.pdf.
  49. 49.
    CDC. Trends in HIV/AIDS diagnoses among men who have sex with men: 33 States, 2001–2006. MMWR. 2008;57:681–6.Google Scholar
  50. 50.
    Hall HI, Byers RH, Ling Q, Espinoza L. Racial/ethnic and age disparities in HIV prevalence and disease progression among men who have sex with men in the United States. Am J Public Health. 2007;97(6):1060–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Hathazi, Lankenau, et al. Health status and service utilization among young injection drug users. American Public Health Association Annual Meeting, Washington, DC; November, 2007.Google Scholar
  52. 52.
    Community-Based HIV Intervention for Young People: Guidance Briefs. UNAIDS Inter-Agency Task Team (IATT) on HIV and young people. Unite Nations, New York; 2008. http://www.unfpa.org/hiv/iatt/docs/unicef.pdf.
  53. 53.
    Tempalski B, Cleland CM, Pouget ER, Chatterjee S, Friedman SR. Persistence of low drug treatment coverage for injection drug users in large US metropolitan areas. Subst Abuse Treat Prev Policy. 2010;5:23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sudip Chatterjee
    • 1
  • Barbara Tempalski
    • 1
  • Enrique R. Pouget
    • 1
  • Hannah L. F. Cooper
    • 2
  • Charles M. Cleland
    • 3
  • Samuel R. Friedman
    • 1
    • 4
  1. 1.National Development and Research Institutes, Inc.New YorkUSA
  2. 2.Behavioral Science & Health Education, Rollins School of Public HealthEmory UniversityAtlantaUSA
  3. 3.College of NursingNew York UniversityNew YorkUSA
  4. 4.Department of EpidemiologyJohn Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations