AIDS and Behavior

, Volume 14, Issue 6, pp 1213–1226 | Cite as

Neurocognitive Impairment and HIV Risk Factors: A Reciprocal Relationship

  • Pria Anand
  • Sandra A. Springer
  • Michael M. Copenhaver
  • Frederick L. Altice
Review Paper


Cognitive impairment among populations at risk for HIV poses a significant barrier to managing risk behaviors. The impact of HIV and several cofactors, including substance abuse and mental illness, on cognitive function is discussed in the context of HIV risk behaviors, medication adherence, and risk-reduction interventions. Literature suggests that cognitive impairment is intertwined in a close, reciprocal relationship with both risk behaviors and medication adherence. Not only do increased risk behaviors and suboptimal adherence exacerbate cognitive impairment, but cognitive impairment also reduces the effectiveness of interventions aimed at optimizing medication adherence and reducing risk. In order to be effective, risk-reduction interventions must therefore take into account the impact of cognitive impairment on learning and behavior.


Cognitive impairment Substance abuse HIV/AIDS Mental illness Medications Antiretroviral therapy Prevention Interventions Methadone Buprenorphine 



The authors would like to thank the National Institute on Drug Abuse for career development awards for Drs. Springer (K23 DA019381), Copenhaver (K23 DA17015), and Altice (K24 DA017072), and the Yale College Fellowship for Research in Health Studies for Pria Anand.


  1. 1.
    World Health Organization. Report on the global AIDS epidemic. Geneva, Switzerland; 2008.Google Scholar
  2. 2.
    Norman LR, Basso M, Kumar A, Malow R. Neuropsychological consequences of HIV and substance abuse: a literature review and implications for treatment and future research. Curr Drug Abuse Rev. 2009;2(2):143–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Woods SP, Moore DJ, Weber E, Grant I. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev. 2009;19(2):152–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Cysique LA, Brew BJ. Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: a review. Neuropsychol Rev. 2009;19(2):169–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Lovejoy TI, Suhr JA. The relationship between neuropsychological functioning and HAART adherence in HIV-positive adults: a systematic review. J Behav Med. 2009;32(5):389–405.CrossRefPubMedGoogle Scholar
  6. 6.
    Gray F, Adle-Biassette H, Chretien F, et al. Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol. 2001;20(4):146–55.PubMedGoogle Scholar
  7. 7.
    Grant I. Neurocognitive disturbances in HIV. Int Rev Psychiatry. 2008;20(1):33–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Reger M, Welsh R, Razani J, Martin DJ, Boone KB. A meta-analysis of the neuropsychological sequelae of HIV infection. J Int Neuropsychol Soc. 2002;8(3):410–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Cysique LA, Maruff P, Brew BJ. Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology. 2006;66(9):1447–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Applebaum AJ, Otto MW, Richardson MA, Safren SA. Contributors to neuropsychological impairment in HIV-infected and HIV-uninfected opiate-dependent patients. J Clin Exp Neuropsychol. 2009:1–11.Google Scholar
  11. 11.
    Li W, Galey D, Mattson MP, Nath A. Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox Res. 2005;8(1–2):119–34.CrossRefPubMedGoogle Scholar
  12. 12.
    Lopez OL, Smith G, Meltzer CC, Becker JT. Dopamine systems in human immunodeficiency virus-associated dementia. Neuropsychiatry Neuropsychol Behav Neurol. 1999;12(3):184–92.PubMedGoogle Scholar
  13. 13.
    Mayer K, Pizer H. HIV prevention: a comprehensive approach. London: Academic Press; 2008.Google Scholar
  14. 14.
    Lucas GM, Cheever LW, Chaisson RE, Moore RD. Detrimental effects of continued illicit drug use on the treatment of HIV-1 infection. J Acquir Immune Defic Syndr. 2001;27(3):251–9.PubMedGoogle Scholar
  15. 15.
    Rapeli P, Kivisaari R, Autti T, et al. Cognitive function during early abstinence from opioid dependence: a comparison to age, gender, and verbal intelligence matched controls. BMC Psychiatry. 2006;6:9.Google Scholar
  16. 16.
    Verdejo-Garcia A, Lopez-Torrecillas F, Gimenez CO, Perez-Garcia M. Clinical implications and methodological challenges in the study of the neuropsychological correlates of cannabis, stimulant, and opioid abuse. Neuropsychol Rev. 2004;14(1):1–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Franco MJ, Marlink R, Hunter DJ, et al. Association of immune activation with intravenous heroin use and methadone treatment in HIV-1 seropositive and seronegative subjects. J Acquir Immune Defic Syndr. 1993;6(12):1297–300.PubMedGoogle Scholar
  18. 18.
    Margolin A, Avants SK, Warburton LA, Hawkins KA. Factors affecting cognitive functioning in a sample of human immunodeficiency virus-positive injection drug users. AIDS Patient Care STDS. 2002;16(6):255–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Copenhaver M, Avants SK, Warburton LA, Margolin A. Intervening effectively with drug abusers infected with HIV: taking into account the potential for cognitive impairment. J Psychoactive Drugs. 2003;35(2):209–18.PubMedGoogle Scholar
  20. 20.
    Zhang L, Looney D, Taub D, et al. Cocaine opens the blood-brain barrier to HIV-1 invasion. J Neurovirol. 1998;4(6):619–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Bruce RD, Altice FL. Clinical care of the HIV-infected drug user. Infect Dis Clin North Am. 2007;21(1):149–79.CrossRefPubMedGoogle Scholar
  22. 22.
    McCann UD, Wong DF, Yokoi F, et al. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35, 428. J Neurosci. 1998;18(20):8417–22.PubMedGoogle Scholar
  23. 23.
    Jernigan TL, Gamst AC, Archibald SL, et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry. 2005;162(8):1461–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Simon SL, Domier C, Carnell J, et al. Cognitive impairment in individuals currently using methamphetamine. Am J Addict. 2000;9(3):222–31.CrossRefPubMedGoogle Scholar
  25. 25.
    Coffey SF, Gudleski GD, Saladin ME, Brady KT. Impulsivity and rapid discounting of delayed hypothetical rewards in cocaine-dependent individuals. Exp Clin Psychopharmacol. 2003;11(1):18–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Nordahl TE, Salo R, Leamon M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci. 2003;15(3):317–25.PubMedGoogle Scholar
  27. 27.
    Simon SL, Domier CP, Sim T, et al. Cognitive performance of current methamphetamine and cocaine abusers. J Addict Dis. 2002;21(1):61–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Wilson J, Kalasinsky K, Levey A, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med. 1996;2(6):699–703.CrossRefPubMedGoogle Scholar
  29. 29.
    Lundh H, Tunving K. An extrapyramidal choreiform syndrome caused by amphetamine addiction. J Neurol Neurosurg Psychiatry. 1981;44(8):728–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Garwood ER, Bekele W, McCulloch CE, Christine CW. Amphetamine exposure is elevated in Parkinson’s disease. Neurotoxicology. 2006;27(6):1003–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Moszczynska A, Fitzmaurice P, Ang L, et al. Why is parkinsonism not a feature of human methamphetamine users? Brain. 2004;127(2):363–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Darke S, Sims J, McDonald S, Wickes W. Cognitive impairment among methadone maintenance patients. Addiction. 2000;95(5):687–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Brandt J, Butters N, Ryan C, Bayog R. Cognitive loss and recovery in long-term alcohol abusers. Arch Gen Psychiatry. 1983;40(4):435–42.PubMedGoogle Scholar
  34. 34.
    Green JE, Saveanu RV, Bornstein RA. The effect of previous alcohol abuse on cognitive function in HIV infection. Am J Psychiatry. 2004;161(2):249–54.CrossRefPubMedGoogle Scholar
  35. 35.
    Cook CC, Hallwood PM, Thomson AD. B Vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. Alcohol Alcohol. 1998;33(4):317–36.PubMedGoogle Scholar
  36. 36.
    Verdejo A, Toribio I, Orozco C, Puente KL, Perez-Garcia M. Neuropsychological functioning in methadone maintenance patients versus abstinent heroin abusers. Drug Alcohol Depend. 2005;78(3):283–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Rapeli P, Fabritius C, Alho H, et al. Methadone vs. buprenorphine/naloxone during early opioid substitution treatment: a naturalistic comparison of cognitive performance relative to healthy controls. BMC Clin Pharmacol. 2007;7:5.CrossRefPubMedGoogle Scholar
  38. 38.
    Bica I, McGovern B, Dhar R, et al. Increasing mortality due to end-stage liver disease in patients with human immunodeficiency virus infection. Clin Infect Dis. 2001;32(3):492–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Cherner M, Letendre S, Heaton RK, et al. Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology. 2005;64(8):1343–7.PubMedGoogle Scholar
  40. 40.
    Cournos F, McKinnon K, Wainberg M. What can mental health interventions contribute to the global struggle against HIV/AIDS? World Psychiatry. 2005;4(3):135–41.PubMedGoogle Scholar
  41. 41.
    Jaffe MP, O’Neill J, Vandergoot D, Gordon WA, Small B. The unveiling of traumatic brain injury in an HIV/AIDS population. Brain Inj. 2000;14(1):35–44.CrossRefPubMedGoogle Scholar
  42. 42.
    Meade CS, Sikkema KJ. HIV risk behavior among adults with severe mental illness: a systematic review. Clin Psychol Rev. 2005;25(4):433–57.CrossRefPubMedGoogle Scholar
  43. 43.
    Weinhardt LS, Carey MP, Carey KB, Maisto SA, Gordon CM. The relation of alcohol use to HIV-risk sexual behavior among adults with a severe and persistent mental illness. J Consult Clin Psychol. 2001;69(1):77–84.CrossRefPubMedGoogle Scholar
  44. 44.
    Abrantes AM, Strong DR, Ramsey SE, Kazura AN, Brown RA. HIV-risk behaviors among psychiatrically hospitalized adolescents with and without comorbid SUD. J Dual Diagn. 2006;2(3):85–100.CrossRefPubMedGoogle Scholar
  45. 45.
    Bauer LO. A family history of psychopathology modifies the decrement in cognitive control among patients with HIV/AIDS. Brain Cogn. 2008;67(1):103–14.CrossRefPubMedGoogle Scholar
  46. 46.
    Brown ES, Rush AJ, McEwen BS. Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology. 1999;21(4):474–84.CrossRefPubMedGoogle Scholar
  47. 47.
    Perry W, Braff DL. Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry. 1994;151(3):363–7.PubMedGoogle Scholar
  48. 48.
    Centers for Disease Control and Prevention. HIV/AIDS Surveillance Report. Atlanta: U.S. Department of Health and Human Services; 2006.Google Scholar
  49. 49.
    Teplin LA, Elkington KS, McClelland GM, et al. Major mental disorders, substance use disorders, comorbidity, and HIV-AIDS risk behaviors in juvenile detainees. Psychiatr Serv. 2005;56(7):823–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Stacy AW, Newcomb MD, Ames SL. Implicit cognition and HIV risk behavior. J Behav Med. 2000;23(5):475.CrossRefPubMedGoogle Scholar
  51. 51.
    Fromme K, D’Amico EJ, Katz EC. Intoxicated sexual risk taking: an expectancy or cognitive impairment explanation? J Stud Alcohol. 1999;60(1):54–63.PubMedGoogle Scholar
  52. 52.
    Dolezal C, Meyer-Bahlburg HFL, Remien RH, Petkova E. Substance use during sex and sensation seeking as predictors of sexual risk behavior among HIV+ and HIV− gay men. AIDS Behav. 1997;1(1):19–28.CrossRefGoogle Scholar
  53. 53.
    Gonzalez R, Vassileva J, Bechara A, et al. The influence of executive functions, sensation seeking, and HIV serostatus on the risky sexual practices of substance-dependent individuals. J Int Neuropsychol Soc. 2005;11(2):121–31.CrossRefPubMedGoogle Scholar
  54. 54.
    Loxley W, Davidson R. How rational is needle sharing to young injecting drug users? Addict Res Theory. 1998;6(6):499–515.CrossRefGoogle Scholar
  55. 55.
    Mitchell MM, Severtson SG, Latimer WW. Interaction of cognitive performance and knowing someone who has died from AIDS on HIV risk behaviors. AIDS Educ Prev. 2007;19(4):289–97.CrossRefPubMedGoogle Scholar
  56. 56.
    De Castro S, Sabate E. Adherence to heroin dependence therapies and human immunodeficiency virus/acquired immunodeficiency syndrome infection rates among drug abusers. Clin Infect Dis. 2003;37(s5):S464–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Wong KH, Lee SS, Lim WL, Low HK. Adherence to methadone is associated with a lower level of HIV-related risk behaviors in drug users. J Subst Abuse Treat. 2003;24(3):233–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Avants SK, Margolin A, McKee S. A path analysis of cognitive, affective, and behavioral predictors of treatment response in a methadone maintenance program. J Subst Abuse. 2000;11(3):215–30.CrossRefPubMedGoogle Scholar
  59. 59.
    Passetti F, Clark L, Mehta MA, Joyce E, King M. Neuropsychological predictors of clinical outcome in opiate addiction. Drug Alcohol Depend. 2008;94(1–3):82–91.CrossRefPubMedGoogle Scholar
  60. 60.
    Paulus MP, Tapert SF, Schuckit MA. Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry. 2005;62(7):761–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Hirsch MS, Conway B, D’Aquila RT, et al. Antiretroviral drug resistance testing in adults with HIV infection: implications for clinical management. International AIDS Society—USA Panel. JAMA. 1998;279(24):1984–91.CrossRefPubMedGoogle Scholar
  62. 62.
    Wainberg MA, Friedland G. Public health implications of antiretroviral therapy and HIV drug resistance. JAMA. 1998;279(24):1977–83.CrossRefPubMedGoogle Scholar
  63. 63.
    Hinkin CH, Castellon SA, Durvasula RS, et al. Medication adherence among HIV+ adults: effects of cognitive dysfunction and regimen complexity. Neurology. 2002;59(12):1944–50.PubMedGoogle Scholar
  64. 64.
    Hinkin CH, Hardy DJ, Mason KI, et al. Medication adherence in HIV-infected adults: effect of patient age, cognitive status, and substance abuse. AIDS. 2004;18(Suppl 1):S19–25.PubMedGoogle Scholar
  65. 65.
    Woods SP, Dawson MS, Weber E, et al. Timing is everything: antiretroviral nonadherence is associated with impairment in time-based prospective memory. J Int Neuropsychol Soc. 2009;15(1):42–52.CrossRefPubMedGoogle Scholar
  66. 66.
    Contardo C, Black AC, Beauvais J, Dieckhaus K, Rosen MI. Relationship of prospective memory to neuropsychological function and antiretroviral adherence. Arch Clin Neuropsychol. 2009;24(6):547–54.CrossRefPubMedGoogle Scholar
  67. 67.
    Waldrop-Valverde D, Jones DL, Weiss S, Kumar M, Metsch L. The effects of low literacy and cognitive impairment on medication adherence in HIV-positive injecting drug users. AIDS Care. 2008;20(10):1202–10.CrossRefPubMedGoogle Scholar
  68. 68.
    Blume AW, Davis JM, Schmaling KB. Neurocognitive dysfunction in dually-diagnosed patients: a potential roadblock to motivating behavior change. J Psychoactive Drugs. 1999;31(2):111–5.PubMedGoogle Scholar
  69. 69.
    Morgenstern J, Bates ME. Effects of executive function impairment on change processes and substance use outcomes in 12-step treatment. J Stud Alcohol. 1999;60(6):846–55.PubMedGoogle Scholar
  70. 70.
    Blume AW, Marlatt GA. The role of executive cognitive functions in changing substance use: what we know and what we need to know. Ann Behav Med. 2009;37(2):117–25.CrossRefPubMedGoogle Scholar
  71. 71.
    Altice FL, Sullivan LE, Smith-Rohrberg D, et al. The potential role of buprenorphine in the treatment of opioid dependence in HIV-infected individuals and in HIV infection prevention. Clin Infect Dis. 2006;43(Suppl 4):S178–83.CrossRefPubMedGoogle Scholar
  72. 72.
    Mintzer MZ, Correia CJ, Strain EC. A dose-effect study of repeated administration of buprenorphine/naloxone on performance in opioid-dependent volunteers. Drug Alcohol Depend. 2004;74(2):205–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Kouri EM, Lukas SE, Mendelson JH. P300 assessment of opiate and cocaine users: effects of detoxification and buprenorphine treatment. Biol Psychiatry. 1996;40(7):617–28.CrossRefPubMedGoogle Scholar
  74. 74.
    Pirastu R, Fais R, Messina M, et al. Impaired decision-making in opiate-dependent subjects: effect of pharmacological therapies. Drug Alcohol Depend. 2006;83(2):163–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Bruce RD, Govindasamy S, Sylla L, et al. Case series of buprenorphine injectors in Kuala Lumpur, Malaysia. Am J Drug Alcohol Abuse. 2008;34(4):511–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Greenwald M, Johanson C-E, Bueller J, et al. Buprenorphine duration of action: mu-opioid receptor availability and pharmacokinetic and behavioral indices. Biol Psychiatry. 2007;61(1):101–10.CrossRefPubMedGoogle Scholar
  77. 77.
    Pachet AK, Wisniewski AM. The effects of lithium on cognition: an updated review. Psychopharmacology (Berl). 2003;170(3):225–34.CrossRefGoogle Scholar
  78. 78.
    Letendre SL, Woods SP, Ellis RJ, et al. Lithium improves HIV-associated neurocognitive impairment. AIDS. 2006;20(14):1885–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Douglas IJ, Smeeth L. Exposure to antipsychotics and risk of stroke: self controlled case series study. BMJ. 2008;337:a1227.CrossRefPubMedGoogle Scholar
  80. 80.
    Cuesta MJ, Peralta V, Zarzuela A. Effects of olanzapine and other antipsychotics on cognitive function in chronic schizophrenia: a longitudinal study. Schizophr Res. 2001;48(1):17–28.CrossRefPubMedGoogle Scholar
  81. 81.
    Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull. 1999;25(2):233–56.PubMedGoogle Scholar
  82. 82.
    Robertson KR, Robertson WT, Ford S, et al. Highly active antiretroviral therapy improves neurocognitive functioning. J Acquir Immune Defic Syndr. 2004;36(1):562–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Springer S, Chen S, Altice F. Depression and symptomatic response among HIV-infected drug users enrolled in a randomized controlled trial of directly administered antiretroviral therapy. AIDS Care. 2009;21(8):976–83.CrossRefPubMedGoogle Scholar
  84. 84.
    Cysique LAJ, Maruff P, Brew BJ. Antiretroviral therapy in hiv infection: are neurologically active drugs important? Arch Neurol. 2004;61(11):1699–704.CrossRefPubMedGoogle Scholar
  85. 85.
    Antinori A, Giancola ML, Grisetti S, et al. Factors influencing virological response to antiretroviral drugs in cerebrospinal fluid of advanced HIV-1-infected patients. AIDS. 2002;16(14):1867–76.CrossRefPubMedGoogle Scholar
  86. 86.
    Cysique LA, Vaida F, Letendre S, et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology. 2009;73(5):342–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Yilmaz A, Price RW, Spudich S, et al. Persistent intrathecal immune activation in HIV-1-infected individuals on antiretroviral therapy. J Acquir Immune Defic Syndr. 2008;47(2):168–73.CrossRefPubMedGoogle Scholar
  88. 88.
    Tozzi V, Balestra P, Galgani S, et al. Positive and sustained effects of highly active antiretroviral therapy on HIV-1-associated neurocognitive impairment. AIDS. 1999;13(14):1889–97.CrossRefPubMedGoogle Scholar
  89. 89.
    McCutchan JA, Wu JW, Robertson K, et al. HIV suppression by HAART preserves cognitive function in advanced, immune-reconstituted AIDS patients. AIDS. 2007;21(9):1109–17.CrossRefPubMedGoogle Scholar
  90. 90.
    Cespedes MS, Aberg JA. Neuropsychiatric complications of antiretroviral therapy. Drug Saf. 2006;29(10):865–74.CrossRefPubMedGoogle Scholar
  91. 91.
    Velligan DI, Diamond PM, Mintz J, et al. The use of individually tailored environmental supports to improve medication adherence and outcomes in schizophrenia. Schizophr Bull. 2008;34(3):483–93.CrossRefPubMedGoogle Scholar
  92. 92.
    Wexler BE, Anderson M, Fulbright RK, Gore JC. Preliminary evidence of improved verbal working memory performance and normalization of task-related frontal lobe activation in schizophrenia following cognitive exercises. Am J Psychiatry. 2000;157(10):1694–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Fals-Stewart W, Schafer J, Lucente S, Rustine T, Brown L. Neurobehavioral consequences of prolonged alcohol and substance abuse: a review of findings and treatment implications. Clin Psychol Rev. 1994;14(8):755–78.CrossRefGoogle Scholar
  94. 94.
    Avants SK, Margolin A, Usubiaga MH, Doebrick C. Targeting HIV-related outcomes with intravenous drug users maintained on methadone: a randomized clinical trial of a harm reduction group therapy. J Subst Abuse Treat. 2004;26(2):67–78.CrossRefPubMedGoogle Scholar
  95. 95.
    Margolin A, Kelly Avants S, Warburton LA, Hawkins KA, Shi J. A randomized clinical trial of a manual-guided risk reduction intervention for HIV-positive injection drug users. Health Psychol. 2003;22(2):223–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Fisher WA, Fisher JD, Pryor JB, Reeder GD. A general social psychological model for changing AIDS risk behavior. The social psychology of HIV infection. Hillsdale: Lawrence Erlbaum Associates; 1993. p. 127–53.Google Scholar
  97. 97.
    Carey MP, Carey KB, Maisto SA, et al. Reducing HIV-risk behavior among adults receiving outpatient psychiatric treatment: results from a randomized controlled trial. J Consult Clin Psychol. 2004;72(2):252–68.CrossRefPubMedGoogle Scholar
  98. 98.
    Morin SF, Shade SB, Steward WT, et al. A behavioral intervention reduces HIV transmission risk by promoting sustained serosorting practices among HIV-infected men who have sex with men. J Acquir Immune Defic Syndr. 2008;49(5):544–51.CrossRefPubMedGoogle Scholar
  99. 99.
    Carrico AW, Chesney MA, Johnson MO, et al. Randomized controlled trial of a cognitive-behavioral intervention for HIV-positive persons: an investigation of treatment effects on psychosocial adjustment. AIDS Behav. 2009;13(3):555–63.CrossRefPubMedGoogle Scholar
  100. 100.
    Kalichman SC. Co-occurrence of treatment nonadherence and continued HIV transmission risk behaviors: implications for positive prevention interventions. Psychosom Med. 2008;70(5):593–7.CrossRefPubMedGoogle Scholar
  101. 101.
    Tross S, Campbell A, Cohen L, et al. Effectiveness of HIV/STD sexual risk reduction groups for women in substance abuse treatment programs: results of a NIDA clinical trials network trial. J Acquir Immune Defic Syndr. 2008;48(5):581.CrossRefPubMedGoogle Scholar
  102. 102.
    Calsyn DA, Hatch-Maillette M, Tross S, et al. Motivational and skills training HIV/sexually transmitted infection sexual risk reduction groups for men. J Subst Abuse Treat. 2009;37(2):138–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pria Anand
    • 1
  • Sandra A. Springer
    • 1
  • Michael M. Copenhaver
    • 2
  • Frederick L. Altice
    • 1
  1. 1.Department of Medicine, Section of Infectious Diseases, AIDS ProgramYale University School of MedicineNew HavenUSA
  2. 2.Departments of Allied Health Sciences and PsychologyUniversity of ConnecticutStorrsUSA

Personalised recommendations