AIDS and Behavior

, Volume 12, Issue 5, pp 677–684

Probability of HIV Transmission During Acute Infection in Rakai, Uganda

Original Paper


Accurate estimates of the probability of HIV transmission during various stages of infection are needed to inform epidemiological models. Very limited information is available about the probability of transmission during acute HIV infection. We conducted a secondary analysis of published data from the Rakai, Uganda seroconversion study. Mathematical and computer-based models were used to quantify the per-act and per-partnership transmission probabilities during acute and chronic HIV infection, and to estimate how many of the transmission events reported in the Rakai study were due to acute-phase HIV transmission. The average per-act transmission probability during acute infection equaled 0.03604 vs. 0.00084 for chronic HIV infection. Overall, HIV was transmitted during acute infection in 46.5% of 23 “incident index partner couples.” Acute-phase transmission accounted for 89.1% of all transmission events in the first 20 months of follow-up. These results highlight the substantial risk of transmission during acute HIV infection.


HIV Acute infection Transmission Modeling 


  1. Association of State and Territorial Health Officials (2006). Acute HIV infection—an opportunity to enhance primary prevention. ASTHO Bulletin, March, 1–16.Google Scholar
  2. Brookmeyer, R., & Gail, M. H. (1994). AIDS epidemiology: A quantitative approach. New York: Oxford University Press.Google Scholar
  3. Busch, M. P., & Satten, G. A. (1997). Time course of viremia and antibody seroconversion following human immunodeficiency virus exposure. American Journal of Medicine, 102, 117–126.PubMedCrossRefGoogle Scholar
  4. Cohen, M. S., & Pilcher, C. D. (2005). Amplified HIV transmission and new approaches to HIV prevention. Journal of Infectious Diseases, 191, 1391–1393.PubMedCrossRefGoogle Scholar
  5. Gray, R. H., Li, X., Kigozi, G., Serwadda, D., Nalugoda, F., Watya, S., Reynolds, S. J., & Wawer, M. (2007). The impact of male circumcision on HIV incidence and cost per infection prevented: A stochastic simulation model from Rakai, Uganda. AIDS, 21, 845–850.PubMedCrossRefGoogle Scholar
  6. Hayes, R. J., & White, R. G. (2006). Amplified HIV transmission during early-stage infection. Journal of Infectious Diseases, 193, 604–605.PubMedCrossRefGoogle Scholar
  7. Hollingsworth, T. D., Anderson, R. M., & Fraser, C. (2006). Has the role of primary HIV been overstated? Presented at 13th Conference on Retroviruses and Opportunistic Infections [Abstract 913], Feb. 5–8, 2006. Denver CO.Google Scholar
  8. Jacquez, J. A., Koopman, J. S., Simon, C. P., & Longini, I. M. (1994). Role of the primary infection in epidemic of HIV infection in gay cohorts. Journal of Acquired Immune Deficiency Syndromes, 7, 1169–1184.PubMedGoogle Scholar
  9. Jewell, N. P., & Shiboski, S. C. (1990). Statistical analysis of HIV infectivity based on partner studies. Biometrics, 46, 1133–1150.PubMedCrossRefGoogle Scholar
  10. Kahn, J. O., & Walker, B. D. (1998). Acute human immunodeficiency virus type 1 infection. New England Journal of Medicine, 339, 33–39.PubMedCrossRefGoogle Scholar
  11. Koopman, J. S., Jacquez, J. A., Welch, G. W., Simon, C. P., Foxman, B., Pollock, S. M., Barth-Jones, D., Adams, A. L., & Lange, K. (1997). The role of early HIV infection in the spread of HIV through populations. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 14, 249–258.PubMedGoogle Scholar
  12. Leynaert, B., Downs, A. M., & de Vincenzi, I. (1998). Heterosexual transmission of human immunodeficiency virus. American Journal of Epidemiology, 148, 88–96.PubMedGoogle Scholar
  13. Lindbäck, S., Karlsson, A. C., Mittler, J., Blaxhult, A., Carlsson, M., Briheim, G., Sönnerborg, A., & Gaines, H. (2000). Viral dynamics in primary HIV-1 infection. AIDS, 14, 2283–2291.PubMedCrossRefGoogle Scholar
  14. Orroth, K. K., White, R. G., Korenromp, E. L., Bakker, R., Changalucha, J., Habbema, D. F., & Hayes, R. J. (2006). Empirical observations underestimate the proportion of human immunodeficiency virus infections attributed to sexually transmitted diseases in the Mwanza and Rakai sexually transmitted disease treatment trials: Simulation results. Sexually Transmitted Diseases, 33, 536–544.PubMedCrossRefGoogle Scholar
  15. Pearson, C. R., Kurth, A. E., Cassels, D. P., Martin, D. P., Simoni, J. M., Hoff, P., Matediana, E., & Gloyd, S. (2007). Modeling HIV transmission risk among Mozambicans prior to their initiating highly active antiretroviral therapy. AIDS Care, 19, 594–604.PubMedCrossRefGoogle Scholar
  16. Pettifor, A. E., Hudgens, M. G., Levandowski, B. A., Rees, H. V., & Cohen, M. S. (2006). Response to letters from Jewkes, Parker and Colvin, and Potterat et al. AIDS, 20, 956–958.CrossRefGoogle Scholar
  17. Pilcher, C. D., Tien, H. C., Eron, J. J. Jr., Vernazza, P. L., Leu, S. Y., Stewart, P. W., Goh, L. E., & Cohen, M. S. (2004). Brief but efficient: Acute HIV infection and the sexual transmission of HIV. Journal of Infectious Diseases, 189, 1785–1792.PubMedCrossRefGoogle Scholar
  18. Pinkerton, S. D. (2007). How many sexually-acquired HIV infections in the US are due to acute-phase HIV transmission? AIDS, 21, 1625–1629.PubMedCrossRefGoogle Scholar
  19. Pinkerton, S. D., Chesson, H. W., Crosby, R. A., & Layde, P. M. (under review). Linearity and non-linearity in HIV/STI transmission dynamics: Implications for the evaluation of sexual risk reduction interventions.Google Scholar
  20. Pinkerton, S. D., Holtgrave, D. R., Leviton, L. C., Wagstaff, D. A., & Abramson, P. R. (1998). Model-based evaluation of HIV prevention interventions. Evaluation Review, 22, 155–174.PubMedCrossRefGoogle Scholar
  21. Rapatski, B. L., Suppe, F., & Yorke, J. A. (2005). HIV epidemic driven by late disease stage transmission. Journal of Acquired Immune Deficiency Syndromes, 38, 241–253.PubMedGoogle Scholar
  22. Robinson, N. J., Mulder, D., Auvert, B., Whitworth, J., & Hayes, R. (1999). Type of partnership and heterosexual spread of HIV infection in rural Uganda: Results from simulation modelling. International Journal of STD & AIDS, 10, 718–725.CrossRefGoogle Scholar
  23. Wawer, M. J., Gray, R. H., Sewankambo, N. K., Serwadda, D., Li, X., Laeyendecker, O., Kiwanuka, N., Kigozi, G., Kiddugavu, M., Lutalo, T., Nalugoda, F., Wabwire-Mangen, F., Meehan, M. P., & Quinn, T. C. (2005). Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. Journal of Infectious Diseases, 191, 1403–1409.PubMedCrossRefGoogle Scholar
  24. Wawer, M. J., Gray, R. H., Sewankambo, N. K., Serwadda, D., Paxton, L., Berkley, S., McNairn, D., Wabwire-Mangen, F., Li. C., Nalugoda, F., Kiwanuka, N., Lutalo, T., Brookmeyer, R., Kelly, R., & Quinn, T. C. (1998). A randomized, community trial of intensive sexually transmitted disease control for AIDS prevention, Rakai, Uganda. AIDS, 12, 1211–1225.PubMedCrossRefGoogle Scholar
  25. Wawer, M. J., Serwadda, D., Quinn, T. C., Sewankambo, N., Kiwanuka, N., Li, X., & Gray, R. H. (2006). Reply to Gisselquist and Potterat. Journal of Infectious Diseases, 192, 1499–1500.CrossRefGoogle Scholar
  26. Wawer, M. J., Sewankambo, N. K., Serwadda, D., Quinn, T. C., Paxton, L. A., Kiwanuka, N., Wabwire-Manger, F., Li, C., Lutalo, C., Nalugoda, F., Gaydos, C. A., Moulton, L. H., Meehan, M. O., & Ahmed, S. (1999). Control of sexually transmitted diseases for AIDS prevention in Uganda: A randomised community trial. Lancet, 353, 525–535.PubMedCrossRefGoogle Scholar
  27. Xiridou, M., Geskus, R., de Wit, J., Coutinho, R., & Kretzschmar, M. (2004). Primary HIV infection as source of HIV transmission within steady and casual partnerships among homosexual men. AIDS, 18, 1311–1320.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for AIDS Intervention Research, Department of Psychiatry and Behavioral MedicineMedical College of WisconsinMilwaukeeUSA

Personalised recommendations