AIDS and Behavior

, Volume 11, Issue 3, pp 365–383 | Cite as

Mediational Analysis in HIV/AIDS Research: Estimating Multivariate Path Analytic Models in a Structural Equation Modeling Framework

  • Angela Bryan
  • Sarah J. Schmiege
  • Michelle R. Broaddus
Review Paper

Abstract

Mediational analyses have been recognized as useful in answering two broad questions that arise in HIV/AIDS research, those of theoretical model testing and of the effectiveness of multicomponent interventions. This article serves as a primer for those wishing to use mediation techniques in their own research, with a specific focus on mediation applied in the context of path analysis within a structural equation modeling (SEM) framework. Mediational analyses and the SEM framework are reviewed at a general level, followed by a discussion of the techniques as applied to complex research designs, such as models with multiple mediators, multilevel or longitudinal data, categorical outcomes, and problematic data (e.g., missing data, nonnormally distributed variables). Issues of statistical power and of testing the significance of the mediated effect are also discussed. Concrete examples that include computer syntax and output are provided to demonstrate the application of these techniques to testing a theoretical model and to the evaluation of a multicomponent intervention.

Keywords

Mediation Path analysis Structural equation modeling (SEM) Multicomponent interventions 

References

  1. Agresti, A. (1990). Categorical data analysis. New York: Wiley.Google Scholar
  2. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides, & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques. Mahwah, NJ: Erlbaum.Google Scholar
  3. Arbuckle, J. L. (2003). Amos 5.0 update to the amos user’s guide. Chicago IL: Smallwaters Corporation.Google Scholar
  4. Albarracin, D., Fishbein, M., & Middlestadt, S. (1998). Generalizing behavioral findings across times, samples, and measures: A study of condom use. Journal of Applied Social Psychology, 28(8), 657–674.CrossRefGoogle Scholar
  5. Albarracin, D., & Wyer, R. S. (2000). The cognitive impact of past behavior: Influences in beliefs, attitudes, and future behavioral decisions. Journal of Personality and Social Psychology, 79, 5–22.PubMedCrossRefGoogle Scholar
  6. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality & Social Psychology, 51, 1173–1182.CrossRefGoogle Scholar
  7. Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31, 419–456.CrossRefGoogle Scholar
  8. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.PubMedCrossRefGoogle Scholar
  9. Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.Google Scholar
  10. Bland, J. M. (2004). Cluster randomised trials in the medical literature: Two bibliometric surveys. BMC Medical Research Methodology, 4(21) [electronic resource].Google Scholar
  11. Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. In C. C. Clogg (Ed.), Sociological methodology 1987 Washington DC: American Sociological Association.Google Scholar
  12. Bollen, K. A. (1989). Structural equations with latent variables. Oxford, England: John Wiley & Sons.Google Scholar
  13. Bryan, A. D., Aiken, L. S., & West, S. G. (1996). Increasing condom use: Evaluation of a theory-based intervention to decrease sexually transmitted disease in women. Health Psychology, 15, 371–382.PubMedCrossRefGoogle Scholar
  14. Bryan, A. D., Fisher, J. D., Fisher, W. A., & Murray, D. M. (2000). Understanding condom use among heroin addicts in methadone maintenance using the information-motivation-behavioral skills model. Substance Use and Misuse, 35, 451–471.PubMedGoogle Scholar
  15. Bryan, A. D., Fisher, J. D., & Benziger, T. J. (2001). Determinants of HIV risk behavior among Indian truck drivers. Social Science and Medicine, 53, 1413–1426.PubMedCrossRefGoogle Scholar
  16. Bryan, A., Rocheleau, C. A., Robbins, R. N., & Hutchison, K. E. (2005). Condom use among high-risk adolescents: Testing the influence of alcohol use on the relationship of cognitive correlates of behavior. Health Psychology, 24, 133–142.PubMedCrossRefGoogle Scholar
  17. Cheong, J., MacKinnon, D. P., & Khoo, S. -T. (2003). Investigation of mediational processes using parallel process latent growth curve modeling. Structural Equation Modeling, 10(2), 238–262.CrossRefPubMedGoogle Scholar
  18. Chou, C. -P., & Bentler, P. M. (1990). Model modification in covariance structure modeling: A comparison among likelihood ratio, Lagrange Multiplier, and Wald tests. Multivariate Behavior Research, 25(1), 115–136.CrossRefGoogle Scholar
  19. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  20. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577.PubMedCrossRefGoogle Scholar
  21. Collins, L. M., Graham, J. W., & Flaherty, B. P. (1998). An alternative framework for defining mediation. Multivariate Behavioral Research, 33, 295–312.CrossRefGoogle Scholar
  22. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.Google Scholar
  23. Diaconis, P., & Efron B. (1983). Computer intensive methods in statistics. Scientific American, 248, 116–130.CrossRefGoogle Scholar
  24. Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics CBMS-NSF Regional Conference Series (No. 38).Google Scholar
  25. Fan, X., & Sivo, S. A. (2005). Sensitivity of fit indexes to misspecified structural or measurement model components: Rationale of two-index strategy revisited. Structural Equation Modeling, 12(3), 343–367.CrossRefGoogle Scholar
  26. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.Google Scholar
  27. Fisher, J. D., & Fisher, W. A. (2002). The information-motivation-behavioral skills model. In R. DiClemente R. Crosby & R. Kegler (Eds.), Emerging promotion research and practice (pp. 40–70). San Francisco, CA: Josey Bass.Google Scholar
  28. Fox, J. (1980). Effect analysis in structural equation models: Extensions and simplified methods of computation. Sociological Methods and Research, 9, 3–28.CrossRefGoogle Scholar
  29. Fox, J. (1985). Effect analysis in structural-equation models II: Calculation of specific indirect effects. Sociological Methods and Research, 14, 81–95.CrossRefGoogle Scholar
  30. Haughton, D. M. A., Oud, J. H. L., & Jansen, R. A. R. G. (1997). Information and other criteria in structural equation model selection. Communications in Statistics: Simulation and Computation, 26, 1477–1516.Google Scholar
  31. Holbert, R. L., & Stephenson, M. T. (2003). The importance of indirect effects in media effects research: Testing for mediation in structural equation modeling. Journal of Broadcasting & Electronic Media, 47(4), 556–572.CrossRefGoogle Scholar
  32. Holmbeck, G. N. (1997). Toward terminological, conceptual, and statistical clarity in the study of mediators and moderators: Examples from the child-clinical and pediatric psychology literatures. Journal of Consulting and Clinical Psychology, 65, 599–610.PubMedCrossRefGoogle Scholar
  33. Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.Google Scholar
  34. Hoyle, R. H. (1995). Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, CA: Sage.Google Scholar
  35. Hoyle, R. H., & Kenny, D. A. (1999). Sample size, reliability, and tests of statistical mediation. In: Hoyle R. H. (Ed). Statistical strategies for small sample research (pp. 195–222). Thousand Oaks, CA: Sage Publications.Google Scholar
  36. Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.CrossRefGoogle Scholar
  37. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  38. Jöreskog, K. G., & Sörbom, D. (2004). LISREL 8.7 for Windows [Computer Software]. Lincolnwood, IL: Scientific Software International, Inc.Google Scholar
  39. Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117, 348–357.CrossRefGoogle Scholar
  40. Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5, 602–619.CrossRefGoogle Scholar
  41. Kenny, D. A. (2006). Mediation. http://davidakenny.net/cm/mediate.htm. Obtained January 26, 2006.Google Scholar
  42. Kenny D. A., Kashy D. A., & Bolger N. (1998). Data analysis in social psychology. In: Gilbert D. T. Fiske S. T. & Lindzey G. (Eds). The handbook of social psychology vol. 1, (4th ed.) (pp. 233–265). New York, NY, US: McGraw-Hill.Google Scholar
  43. Kraemer, H. C., Wilson, G. T., Fairburn, C. G., & Agras, W. S. (2002). Mediators and moderators of treatment effects in randomized clinical trials. Archives of General Psychiatry, 59, 877–883.PubMedCrossRefGoogle Scholar
  44. Krull, J. L., & MacKinnon, D. P. (1999) Multilevel mediation modeling in group-based intervention studies. Evaluation Review, 23, 418–444.PubMedCrossRefGoogle Scholar
  45. Krull, J. L., & MacKinnon, D. P. (2001). Multilevel modeling of individual and group level mediated effects. Multivariate Behavioral Research, 36, 249–277.CrossRefGoogle Scholar
  46. Loehlin, J. C. (1992). Latent variable models: An introduction to factor, path, and structural analysis. (2nd Ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  47. MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100(1), 107–120.CrossRefGoogle Scholar
  48. MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201–226.PubMedCrossRefGoogle Scholar
  49. MacCallum, R. C., Wegener, D. T., Uchino, B. N., & Fabrigar, L. R. (1993). The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114, 185–199.PubMedCrossRefGoogle Scholar
  50. MacKinnon, D.P. (in press). Introduction to statistical mediation analysis, Mahwah, NJ: Erlbaum.Google Scholar
  51. MacKinnon, D. P. (1994). Analysis of mediating variables in prevention, intervention research. In: A. Cazares, & L.A. Beatty (Eds.), Scientific methods for prevention intervention research (pp. 127–153). Washington, DC: NIDA Research Monograph 139, DHHS Pub. 94–3631.Google Scholar
  52. MacKinnon, D. P. (2000). Contrasts in multiple mediator models. In: J. Rose, L. Chassin, C. C. Presson, & S. J. Sherman (Eds.), Multivariate applications in substance use research: New methods for new questions (pp. 141–160). Mahwah, NJ: Erlbaum.Google Scholar
  53. MacKinnon, D. P., & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17, 144–158.CrossRefGoogle Scholar
  54. MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104.PubMedCrossRefGoogle Scholar
  55. MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128.CrossRefPubMedGoogle Scholar
  56. MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1, 173–181.PubMedCrossRefGoogle Scholar
  57. MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30, 41–62.CrossRefPubMedGoogle Scholar
  58. Marsh, H. W., Hau, K., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11(3), 320–341.CrossRefGoogle Scholar
  59. Marcoulides, G. A., & Schumacker, R. E. (1996). Introduction. In G. A. Marcoulides, & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques. (pp. 1–6). Mahwah, NJ: Erlbaum.Google Scholar
  60. Muthén, B. O. (1979). A structural probit model with latent variables. Journal of the American Statistical Association, 74, 807–811.CrossRefGoogle Scholar
  61. Muthén, B. O. (1983). Latent variable structural equation modeling with categorical data. Journal of Econometrics, 22, 43–65.CrossRefGoogle Scholar
  62. Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.CrossRefGoogle Scholar
  63. Muthén, L. K., & Muthén, B. O. (1998–2005). Mplus User’s Guide. (3rd ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  64. Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical Modeling. VCU Box 900126, Richmond, VA 23298: Department of Psychiatry. 6th Edition.Google Scholar
  65. Pearl, J. (2000). Causality:Models, reasoning, and inference. Cambridge, U.K.: Cambridge University Press.Google Scholar
  66. Preacher, K. J. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731.Google Scholar
  67. Puffer, S., Torgerson, D. J., & Watson, J. (2003). Evidence for risk of bias in cluster randomized trials: Review of recent trials published in three general medical journals. BMJ: British Medical Journal, 327(7418), 785–789.PubMedGoogle Scholar
  68. Rosenstock, I. M. (1990). The health belief model: Explaining health behavior through expectancies. In. K. Glanz F. M. Lewis & G. K. Rimer. (Eds.), Health Behavior and Health Education (pp. 39–62). San Francisco, CA: Jossey-Bass.Google Scholar
  69. SAS (Version 9.1) [Computer Program]. (2005). Cary, NC: SAS Institute Inc.Google Scholar
  70. Satorra, A, & Bentler, P. M. (1988). Scaling corrections for chi-square test statistics in covariance structure analysis. ASA 1988 Proceedings of the Business and Economic Statistics Section, Alexandria, VA: American Statistical Association, pp. 308–313.Google Scholar
  71. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye, & C. C. Clogg (Eds.), Latent variable analysis: Applications for developmental research (pp. 399–419). Thousand Oaks, CA: Sage.Google Scholar
  72. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin Company.Google Scholar
  73. Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445.PubMedCrossRefGoogle Scholar
  74. Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. In S. Leinhardt (Ed.), Sociological methodology 1982 (pp. 290–312). Washington, DC: American Sociological Association.Google Scholar
  75. Steiger, J. H., & Lind, J. C. (1980, May). Statistically based tests for the number of factors. Paper presented at the annual spring meeting of the Psychometric Society, Iowa City, IA.Google Scholar
  76. Wayment, H. A., Wyatt, G. E., Tucker, M. B., Romero, G. J., Carmona, J. V., & Newcomb, M., et al. (2003). Predictors of risk and precautionary sexual behaviors among single and married white women. Journal of Applied Social Psychology, 33, 791–816.CrossRefGoogle Scholar
  77. Winship, C., & Mare, R. D. (1983). Structural equations and path analysis with discrete data. American Journal of Sociology, 89, 54–110.CrossRefGoogle Scholar
  78. West, S. G., & Aiken, L. S. (1997). Towards understanding individual effects in multiple component prevention programs: Design, analysis strategies. In K. Bryant, M. Windle, & S. West (Eds.). The science of prevention: Methodological advances from alcohol and substance abuse research. (pp. 167–209). Washington, D. C.: American Psychological Association.Google Scholar
  79. West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In. R. H. Hoyle (Ed.). Structural equation modeling: Concepts, issues, and applications. (pp. 56–75). Thousand Oaks, CA: Sage Publications.Google Scholar
  80. Xie, Y. (1989). Structural equation models for ordinal variables: An analysis of occupational desination. Sociological Methods and Research, 17, 325–352.CrossRefGoogle Scholar
  81. Yuan, K. -H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology 2000, 30, 167–202.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Angela Bryan
    • 1
  • Sarah J. Schmiege
    • 1
  • Michelle R. Broaddus
    • 1
  1. 1.Department of PsychologyUniversity of ColoradoBoulderUSA

Personalised recommendations