Advertisement

Fostering medical students’ clinical reasoning by learning from errors in clinical case vignettes: effects and conditions of additional prompting procedures to foster self-explanations

  • Martin KleinEmail author
  • Bärbel Otto
  • Martin R. Fischer
  • Robin Stark
Article

Abstract

The present study aims at fostering undergraduate medical students’ clinical reasoning by learning from errors. By fostering the acquisition of “negative knowledge” about typical cognitive errors in the medical reasoning process, we support learners in avoiding future erroneous decisions and actions in similar situations. Since learning from errors is based on self-explanation activities, we provided additional prompting procedures to foster the effectiveness of the error-based instructional approach. The extent of instructional support in a web-based learning environment with erroneous clinical case examples was varied in a one-factorial design with three groups by either presenting the cases as (a) unsupported worked examples or by providing the participants with (b) closed prompts in the form of multiple-choice tasks or (c) with open reflection prompts during the learning process. Despite significant learning progress in all conditions, neither prompting procedure improved the learning outcomes beyond the level of the unsupported worked example condition. In contrast to our hypotheses, the unsupported worked example condition was the most effective with respect to fostering clinical reasoning performance. The effects of the learning conditions on clinical reasoning performance was mediated by cognitive load, and moderated by the students’ self-efficacy. Both prompting procedures increased extraneous cognitive load. For learners with low self-efficacy, the prompting procedures interfered with effective learning from errors. Although our error-based instructional approach substantially improved clinical reasoning, additional instructional measures intended to support error-based learning processes may overtax learners in an early phase of clinical expertise development and should therefore only be used in moderation.

Keywords

Medical education Clinical reasoning Learning from errors Reflection prompts Cognitive load Self-efficacy 

Notes

Funding

Funding was provided by Deutsche Forschungsgemeinschaft, German Research Foundation (Grant Nos. STA 596/7-1, FI720/6-1).

Compliance with ethical standards

Ethical standards

This study was approved to comply with ethical standards by the Ethics Committee of the Ludwig-Maximilians-University, Munich.

References

  1. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychology Review, 84, 191–215.Google Scholar
  2. Berner, E. S., & Graber, M. L. (2008). Overconfidence as a cause of diagnostic error in medicine. American Journal of Medicine, 121, 2–23.  https://doi.org/10.1016/j.amjmed.2008.01.001.Google Scholar
  3. Berthold, K., Eysink, T. H. S., & Renkl, A. (2009). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 37(4), 345–363.  https://doi.org/10.1007/s11251-008-9051-z.Google Scholar
  4. Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101(1), 70–87.Google Scholar
  5. Boekaerts, M. (2006). Self-regulation and effort investment. In W. Damon & R. Lerner (Eds.), Handbook of child psychology (6th ed., pp. 345–377). New York: Wiley.Google Scholar
  6. Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples. Learning and Instruction, 25, 24–34.  https://doi.org/10.1016/j.learninstruc.2012.11.002.Google Scholar
  7. Bordage, G., Brailovsky, C., Carretier, H., & Page, G. (1995). Content validation of key features on a national examination of clinical decision-making skills. Academic Medicine, 70(4), 276–281.  https://doi.org/10.1097/00001888-199504000-00010.Google Scholar
  8. Chamberland, M., Mamede, S., St-Onge, C., Rivard, M. A., Setrakian, J., Lévesque, A., et al. (2013). Students’ self-explanations while solving unfamiliar cases: The role of biomedical knowledge. Medical Education, 47(11), 1109–1116.  https://doi.org/10.1111/medu.12253.Google Scholar
  9. Chamberland, M., Mamede, S., St-Onge, C., Setrakian, J., Bergeron, L., & Schmidt, H. (2015a). Self-explanation in learning clinical reasoning: The added value of examples and prompts. Medical Education, 49(2), 193–202.  https://doi.org/10.1111/medu.12623.Google Scholar
  10. Chamberland, M., Mamede, S., St-Onge, C., Setrakian, J., & Schmidt, H. G. (2015b). Does medical students’ diagnostic performance improve by observing examples of self-explanation provided by peers or experts? Advances in Health Sciences Education: Theory and Practice., 4, 981–993.  https://doi.org/10.1007/s10459-014-9576-7.Google Scholar
  11. Chamberland, M., St-Onge, C., Setrakian, J., Lanthier, L., Bergeron, L., Bourget, A., et al. (2011). The influence of medical students’ self-explanations on diagnostic performance. Medical Education, 45(7), 688–695.  https://doi.org/10.1111/j.1365-2923.2011.03933.x.Google Scholar
  12. Charlin, B., Boshuizen, H. P. A., Custers, E. J., & Feltovich, P. J. (2007). Scripts and clinical reasoning. Medical Education, 41, 1178–1184.  https://doi.org/10.1111/j.1365-2923.2007.02924.x.Google Scholar
  13. Coderre, S., Mandin, H., Harasym, P. H., & Fick, G. H. (2003). Diagnostic reasoning strategies and diagnostic success. Medical Education, 37(8), 695–703.  https://doi.org/10.1046/j.1365-2923.2003.01577.x.Google Scholar
  14. Cronbach, L. J., & Snow, R. E. (1977). Aptitudes and instructional methods. New York, NY: Irvington.Google Scholar
  15. Croskerry, P. (2009). A universal model of diagnostic reasoning. Academic Medicine, 84(8), 1022–1028.Google Scholar
  16. Croskerry, P. (2013). From mindless to mindful practice—Cognitive bias and clinical decision-making. New England Journal of Medicine, 368, 2445–2448.  https://doi.org/10.1097/ACM.0b013e3181ace703.Google Scholar
  17. Curry, L. (2004). The effects of self-explanations of correct and incorrect solutions on algebra problem solving performance. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th annual conference of the cognitive science society (Vol. 1548). Mahwah, NJ: Erlbaum.Google Scholar
  18. Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22, 206–214.  https://doi.org/10.1097/ACM.0b013e3181ace703.Google Scholar
  19. Dyre, L., Tabor, A., Ringsted, C., & Tolsgaard, M. G. (2016). Imperfect practice makes perfect: Error management training improves transfer of learning. Medical Education, 51(2), 196–206.  https://doi.org/10.1111/medu.13208.Google Scholar
  20. Endres, T., & Renkl, A. (2015). Mechanisms behind the testing effect: An empirical investigation of retrieval practice in meaningful learning. Frontiers in Psychology.  https://doi.org/10.1016/j.learninstruc.2011.11.001.Google Scholar
  21. Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (Revised ed.). Cambridge: MIT Press.Google Scholar
  22. Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavioral Research Methods, 39(2), 175–191.  https://doi.org/10.3758/BF03193146.Google Scholar
  23. Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and learning. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 15–41). New York: MacMillian.Google Scholar
  24. Hausmann, R. G. M., & VanLehn, K. (2007). Explaining self-explaining: A contrast between content and generation. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Artificial intelligence in education: Building technology rich learning contexts that work (Vol. 158, pp. 417–424). Amsterdam: IOS Press.Google Scholar
  25. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: The Guilford Press.Google Scholar
  26. Heitzmann, N., Fischer, F., & Fischer, M. (2013). When error-explanation prompts and adaptable feedback cannot support the learning of diagnostic competence. Paper presented at the Annual Meeting of the American Educational Research Association (AERA) “Education and Poverty: Theory, Research, Policy, and Praxis”, San Francisco, April 27–May 1, 2013.Google Scholar
  27. Jerusalem, M., & Schwarzer, R. (1999). Allgemeine Selbstwirksamkeitserwartung [General self-efficacy expectation]. In R. Schwarzer & M. Jerusalem (Eds.), Skalen zur Erfassung von Lehrer- und Schülermerkmalen [scales for the assessment of teacher and student characteristics] (pp. 13–14). Berlin: Freie Universität Berlin.Google Scholar
  28. Kirschner, P., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.Google Scholar
  29. Klein, M., Kopp, V., Fischer, M. R., & Stark, R. (accepted). Think aloud protocols in medical education: An assessment of the diagnostic approach and handling of instructional errors in experts and novices. In E. Klopp, J. F. Schneider & R. Stark (Eds.), Thinking aloud: The mind in action. Google Scholar
  30. Klein, M., Wagner, K., Klopp, E., & Stark, R. (2015). Förderung anwendbaren bildungswissenschaftlichen Wissens bei Lehramtsstudierenden anhand fehlerbasierten kollaborativen Lernens: Eine Studie zur Replikation bisheriger Befunde sowie zur Nachhaltigkeit und Erweiterung der Trainingsmaßnahmen [Fostering of applicable educational knowledge in student teachers by error-based collaborative learning: Replication of findinds and extension of the training intervention]. Unterrichtswissenschaft, 43(3), 225–244.Google Scholar
  31. Klopp, E., Stark, R., Kopp, V., & Fischer, M. R. (2013). Psychological factors affecting medical students’ learning with erroneous worked examples. Journal of Education and Learning, 2(1), 158–170.  https://doi.org/10.5539/jel.v2n1p158.Google Scholar
  32. Kolodner, J. L. (2006). Case-based reasoning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 225–242). Cambridge: Cambridge University Press.Google Scholar
  33. La Rochelle, J. S., Durning, S. J., Pangaro, L. N., Artino, A. R., Van der Vleuten, C. P. M., & Schuwirth, L. (2011). Authenticity of instruction and student performance: A prospective randomised trial. Medical Education, 45, 807–817.Google Scholar
  34. Lanubile, F., Shull, F., & Basili, V. R. (1998). Experimenting with error abstraction in requirements documents. In Proceedings of fifth international symposium software metrics (pp. 114–121). http://dx.doi.org/10.1109/METRIC.1998.731236.
  35. Larsen, D. P., Butler, A. C., & Roediger, H. L. (2008). Test-enhanced learning in medical education. Medical Education, 42(10), 959–966.Google Scholar
  36. Lawson, A. E., & Daniel, E. S. (2011). Inferences of clinical diagnostic reasoning and diagnostic error. Journal of Biomedical Informatics, 44, 402–412.  https://doi.org/10.1016/j.jbi.2010.01.003.Google Scholar
  37. Mamede, S., Schmidt, H. G., & Rikers, R. (2007). Diagnostic errors and reflective practice in medicine. Journal of Evaluation in Clinical Practice, 13(1), 138–145.  https://doi.org/10.1016/j.jbi.2010.01.003.Google Scholar
  38. Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). Cambridge, MA: Cambridge University Press.Google Scholar
  39. Moreno, R. (2010). Cognitive load theory: More food for thought. Instructional Science, 38(2), 135–141.  https://doi.org/10.1016/j.jbi.2010.01.003.Google Scholar
  40. Oser, F. (2007). Aus Fehlern lernen [learning from errors]. In M. Göhlich, Ch. Wulf, & J. Zirfas (Eds.), Pädagogische Theorien des Lernens [Pedagogical learning theories] (pp. 203–212). Weinheim: Beltz.Google Scholar
  41. Oser, F., & Spychiger, M. (2005). Lernen ist schmerzhaft. Zur Theorie des Negativen Wissens und zur Praxis der Fehlerkultur [Learning is painful. On the theory of negative knowledge and the practice of error culture]. Weinheim: Beltz.Google Scholar
  42. Paas, F., & Kalyuga, S. (2005). Cognitive measurements to design effective learning environments. Paper presented at the International Workshop and Mini-conference on Extending Cognitive Load Theory and Instructional Design to the Development of Expert Performance. Heerlen, The Netherlands.Google Scholar
  43. Paas, F., & Kirschner, F. (2012). The goal-free effect. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 1375–1377). Berlin: Springer.Google Scholar
  44. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4.Google Scholar
  45. Paris, S., Lipson, M., & Wixson, K. (1983). Becoming a strategic reader. Contemporary Educational Psychology, 8(3), 293–316.  https://doi.org/10.1016/0361-476X(83)90018-8.Google Scholar
  46. Patel, V. L., Arocha, J. F., & Zhang, J. (2012). Medical reasoning and thinking. In: The Oxford handbook of thinking and reasoning. Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199734689.013.0037.
  47. Renkl, A. (1997). Intrinsic motivation, self-explanations, and transfer. München: Universität, Institut für Pädagogische Psychologie und Empirische Pädagogik.Google Scholar
  48. Renkl, A. (1999). Learning mathematics from worked-out examples: Analyzing and fostering self-explanations. European Journal of Psychology of Education, 14(4), 477–488.Google Scholar
  49. Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning. Cognitive Science, 38(1), 1–37.Google Scholar
  50. Renkl, A., & Atkinson, R. K. (2010). Learning from worked-out examples and problem solving. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory (pp. 91–108). Cambridge: Cambridge University Press.Google Scholar
  51. Rikers, R. M. J. P., Schmidt, H. G., & Boshuizen, H. P. A. (2000). Knowledge encapsulation and the intermediate effect. Contemporary Educational Psychology, 25(2), 150–166.  https://doi.org/10.1006/ceps.1998.1000.Google Scholar
  52. Schmidmaier, R., Ebersbach, R., Schiller, M., Hege, I., Holzer, M., & Fischer, M. R. (2011). Using electronic flashcards to promote learning in medical students: Retesting versus restudying. Medical Education, 45(11), 1101–1110.  https://doi.org/10.1111/j.1365-2923.2011.04043.x.Google Scholar
  53. Schnell, K., Ringeisen, T., Raufelder, D., & Rohrmann, S. (2015). The impact of adolescents’ self-efficacy and self-regulated goal attainment processes on school performance—Do gender and test anxiety matter? Learning and Individual Differences, 38, 90–98.  https://doi.org/10.1016/j.lindif.2014.12.008.Google Scholar
  54. Seufert, T., Schütze, M., & Brünken, R. (2009). Memory characteristics and modality in multimedia learning: An aptitude-treatment-interaction study. Learning and Instruction, 19, 28–42.  https://doi.org/10.1006/ceps.1998.1000.Google Scholar
  55. Simmons, B. (2010). Clinical reasoning: Concept analysis. Journal of Advanced Nursing, 66, 1151–1158.  https://doi.org/10.1111/j.1365-2648.2010.05262.x.Google Scholar
  56. Simonsohn, A. B., & Fischer, M. R. (2004). Evaluation of a case-based computerized learning program (CASUS) for medical students during their clinical years. Deutsche Medizinische Wochenschrift, 129, 552–556.Google Scholar
  57. Stark, R., Kopp, V., & Fischer, M. (2011). Case-based learning with worked examples in complex domains: Two experimental studies in undergraduate medical education. Learn Instruc, 21(1), 22–33.Google Scholar
  58. Stark, R., Mandl, H., Gruber, H., & Renkl, A. (2002). Conditions and effects of example elaboration. Learning and Instruction, 12, 39–60.Google Scholar
  59. Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational Psychology Review, 22, 123–138.  https://doi.org/10.1007/s10648-010-9128-5.Google Scholar
  60. Sweller, J., van Merriёnboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.Google Scholar
  61. Thammasitboon, S., & Cutrer, W. B. (2013). Diagnostic decision-making and strategies to improve diagnosis. Current Problems in Pediatric and Adolescent Health Care, 43, 232–241.Google Scholar
  62. Van de Wiel, M. W. J., Boshuizen, H. P. A., & Schmidt, H. G. (2000). Knowledge structuring in expertise development: Evidence from pathophysiological representations of clinical cases by students and physicians. European Journal of Cognitive Psychology, 12(3), 323–355.Google Scholar
  63. VanLehn, K., Siler, S., Murray, R. C., Yamauchi, T., & Baggett, W. B. (2003). Why do only some events cause learning during human tutoring? Cognition and Instruction, 21, 209–249.  https://doi.org/10.1207/S1532690XCI2103_01.Google Scholar
  64. Vollmeyer, R., & Burns, B. D. (2002). Goal specificity and learning with a hypermedia program. Experimental Psychology, 49, 98–108.  https://doi.org/10.1027//1618-3169.49.2.98.Google Scholar
  65. Wagner, K., Klein, M., Klopp, E., & Stark, R. (2014). Instruktionale Unterstützung beim Lernen aus advokatorischen Fehlern in der Lehramtsausbildung: Effekte auf die Anwendung wissenschaftlichen Wissens [Instructional support in learning from advocatory errors in teacher education: Effects on the application of scientific knowledge]. Psychologie in Erziehung und Unterricht, 61, 287–301.Google Scholar
  66. Walia, G. S., & Carver, J. C. (2013). Using error abstraction and classification to improve requirement quality: Conclusions from a family of four empirical studies. Empirical Software Engineering, 18(4), 625–658.  https://doi.org/10.1007/s10664-012-9202-3.Google Scholar
  67. Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25, 82–91.  https://doi.org/10.1207/S1532690XCI2103_01.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of EducationSaarland UniversitySaarbrückenGermany
  2. 2.Institute for Medical EducationUniversity Hospital of LMU MunichMunichGermany

Personalised recommendations