Advertisement

Fast core pricing algorithms for path auction

  • Hao ChengEmail author
  • Wentao Zhang
  • Yi Zhang
  • Lei Zhang
  • Jun Wu
  • Chongjun Wang
Article
  • 20 Downloads

Abstract

Path auction is held in a graph, where each edge stands for a commodity and the weight of this edge represents the prime cost. Bidders own some edges and make bids for their edges. The auctioneer needs to purchase a sequence of edges to form a path between two specific vertices. Path auction can be considered as a kind of combinatorial reverse auctions. Core-selecting mechanism is a prevalent mechanism for combinatorial auction. However, pricing in core-selecting combinatorial auction is computationally expensive, one important reason is the exponential core constraints. The same is true of path auction. To solve this computation problem, we simplify the constraint set and get the optimal set with only polynomial constraints in this paper. Based on our constraint set, we put forward two fast core pricing algorithms for the computation of bidder-Pareto-optimal core outcome. Among all the algorithms, our new algorithms have remarkable runtime performance. Finally, we validate our algorithms on real-world datasets and obtain excellent results.

Keywords

Path auction Core Pricing algorithm Constraint set 

Notes

Acknowledgements

This paper is supported by the National Key Research and Development Program of China (Grant No. 2018YFB1403400), the National Natural Science Foundation of China (Grant No. 61876080), the Collaborative Innovation Center of Novel Software Technology and Industrialization at Nanjing University.

References

  1. 1.
    Archer, A., & Tardos, É. (2007). Frugal path mechanisms. ACM Transactions on Algorithms (TALG), 3(1), 3.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ausubel, L. M., & Milgrom, P. R. (2002). Ascending auctions with package bidding. Advances in Theoretical Economics, 1(1), 1–42.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ausubel, L. M., Milgrom, P., et al. (2006). The lovely but lonely Vickrey auction. Combinatorial Auctions, 17, 22–26.Google Scholar
  4. 4.
    Bünz, B., Seuken, S., & Lubin, B. (2015). A faster core constraint generation algorithm for combinatorial auctions. In Twenty-Ninth AAAI conference on artificial intelligence (pp. 827–834).Google Scholar
  5. 5.
    Bünz, B., Lubin, B., & Seuken, S. (2018). Designing core-selecting payment rules: A computational search approach. In Proceedings of the 2018 ACM conference on economics and computation (pp. 109–109). ACM.Google Scholar
  6. 6.
    Cheng, H., Zhang, L., Zhang, Y., Wu, J., & Wang, C. (2018). Optimal constraint collection for core-selecting path mechanism. In Proceedings of the 17th international conference on autonomous agents and multiagent systems (pp. 41–49).Google Scholar
  7. 7.
    Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11(1), 17–33.CrossRefGoogle Scholar
  8. 8.
    Cramton, P. (2013). Spectrum auction design. Review of Industrial Organization, 42(2), 161–190.CrossRefGoogle Scholar
  9. 9.
    Day, R., & Milgrom, P. (2013). Optimal incentives in core-selecting auctions. In The handbook of market design (Chap. 11, pp. 282–298). OUP Oxford.Google Scholar
  10. 10.
    Day, R., & Milgrom, P. (2008). Core-selecting package auctions. International Journal of Game Theory, 36(3–4), 393–407.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Day, R. W., & Cramton, P. (2012). Quadratic core-selecting payment rules for combinatorial auctions. Operations Research, 60(3), 588–603.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Day, R. W., & Raghavan, S. (2007). Fair payments for efficient allocations in public sector combinatorial auctions. Management Science, 53(9), 1389–1406.zbMATHCrossRefGoogle Scholar
  13. 13.
    Du, Y., Sami, R., & Shi, Y. (2010). Path auctions with multiple edge ownership. Theoretical Computer Science, 411(1), 293–300.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Elkind, E., Sahai, A., & Steiglitz, K. (2004). Frugality in path auctions. In Proceedings of the fifteenth annual ACM-SIAM symposium on discrete algorithms (pp. 701–709). Society for Industrial and Applied MathematicsGoogle Scholar
  15. 15.
    Erdil, A., & Klemperer, P. (2010). A new payment rule for core-selecting package auctions. Journal of the European Economic Association, 8(2–3), 537–547.CrossRefGoogle Scholar
  16. 16.
    Feigenbaum, J., Papadimitriou, C., Sami, R., & Shenker, S. (2005). A BGP-based mechanism for lowest-cost routing. Distributed Computing, 18(1), 61–72.zbMATHCrossRefGoogle Scholar
  17. 17.
    Grötschel, M., Lovász, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2), 169–197.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Groves, T., et al. (1973). Incentives in teams. Econometrica, 41(4), 617–631.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hartline, J., Immorlica, N., Khani, M.R., Lucier, B., & Niazadeh, R. (2018). Fast core pricing for rich advertising auctions. In Proceedings of the 2018 ACM conference on economics and computation (pp. 111–112). ACM.Google Scholar
  20. 20.
    Hershberger, J., & Suri, S. (2001). Vickrey prices and shortest paths: What is an edge worth? In Proceedings 42nd IEEE symposium on foundations of computer science (pp. 252–259). IEEE.Google Scholar
  21. 21.
    Karger, D., & Nikolova, E. (2006). On the expected VCG overpayment in large networks. In Proceedings of the 45th IEEE conference on decision and control (pp. 2831–2836).Google Scholar
  22. 22.
    Karlin, A.R., Kempe, D., & Tamir, T. (2005). Beyond VCG: Frugality of truthful mechanisms. In 46th annual IEEE symposium on foundations of computer science (FOCS’05) (pp. 615–626). IEEE.Google Scholar
  23. 23.
    Lee, Y. T., Sidford, A., & Wong, S. C. W. (2015). A faster cutting plane method and its implications for combinatorial and convex optimization. In 56th annual symposium on foundations of computer science (pp. 1049–1065). IEEE.Google Scholar
  24. 24.
    Lehmann, D., Oćallaghan, L. I., & Shoham, Y. (2002). Truth revelation in approximately efficient combinatorial auctions. Journal of the ACM (JACM), 49(5), 577–602.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Leskovec, J., & Krevl, A. (2014, June). SNAP datasets: Stanford large network dataset collection. http://snap.stanford.edu/data/.
  26. 26.
    Nisan, N., & Ronen, A. (1999). Algorithmic mechanism design. In Proceedings of the thirty-first annual ACM symposium on theory of computing (pp. 129–140). ACM.Google Scholar
  27. 27.
    Polymenakos, L., & Bertsekas, D. P. (1994). Parallel shortest path auction algorithms. Parallel Computing, 20(9), 1221–1247.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Rothkopf, M. H., Pekeč, A., & Harstad, R. M. (1998). Computationally manageable combinational auctions. Management science, 44(8), 1131–1147.zbMATHCrossRefGoogle Scholar
  29. 29.
    Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance, 16(1), 8–37.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yokoo, M., Sakurai, Y., & Matsubara, S. (2004). The effect of false-name bids in combinatorial auctions: New fraud in internet auctions. Games and Economic Behavior, 46(1), 174–188.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhang, L., Chen, H., Wu, J., Wang, C. J., & Xie, J. (2016). False-name-proof mechanisms for path auctions in social networks. In ECAI (pp. 1485–1492).Google Scholar
  32. 32.
    Zhu, Y., Li, B., Fu, H., & Li, Z. (2014). Core-selecting secondary spectrum auctions. IEEE Journal on Selected Areas in Communications, 32(11), 2268–2279.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Hao Cheng
    • 1
    Email author
  • Wentao Zhang
    • 1
  • Yi Zhang
    • 1
  • Lei Zhang
    • 1
  • Jun Wu
    • 1
  • Chongjun Wang
    • 1
  1. 1.National Key Laboratory for Novel Software Technology, Department of Computer Science and TechnologyNanjing UniversityNanjingChina

Personalised recommendations