Advertisement

Autonomous Agents and Multi-Agent Systems

, Volume 33, Issue 5, pp 591–627 | Cite as

Local envy-freeness in house allocation problems

  • Aurélie Beynier
  • Yann Chevaleyre
  • Laurent Gourvès
  • Ararat Harutyunyan
  • Julien Lesca
  • Nicolas MaudetEmail author
  • Anaëlle Wilczynski
Article
  • 20 Downloads

Abstract

We study the fair division problem consisting in allocating one item per agent so as to avoid (or minimize) envy, in a setting where only agents connected in a given network may experience envy. In a variant of the problem, agents themselves can be located on the network by the central authority. These problems turn out to be difficult even on very simple graph structures, but we identify several tractable cases. We further provide practical algorithms and experimental insights.

Keywords

Object allocation Envy-freeness Complexity Algorithms 

Notes

Acknowledgements

This work is partially supported by the ANR Project 14- CE24-0007-01- CoCoRICo-CoDec. We thank the reviewers of the conference and journal versions for their useful comments.

References

  1. 1.
    Abdulkadiroǧlu, A., & Sönmez, T. (1998). Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica, 66(3), 689–701.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abebe, R., Kleinberg, J., & Parkes, D. C. (2017). Fair division via social comparison. In Proceedings of the 16th international conference on autonomous agents and multiagent systems (AAMAS-17) (pp. 281–289). ACM, São Paulo, Brazil.Google Scholar
  3. 3.
    Amanatidis, G., Birmpas, G., & Markakis, V. (2018). Comparing approximate relaxations of envy-freeness. In Proceedings of the 27th international joint conference on artificial intelligence (IJCAI-18) (pp. 42–48). International Joint Conferences on Artificial Intelligence, Stockholm, Sweden.Google Scholar
  4. 4.
    Aspvall, B., Plass, M. F., & Tarjan, R. E. (1979). A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8(3), 121–123.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., & Protasi, M. (2012). Complexity and approximation: Combinatorial optimization problems and their approximability properties. Berlin: Springer.zbMATHGoogle Scholar
  6. 6.
    Aziz, H., Bouveret, S., Caragiannis, I., Giagkousi, I., & Lang, J. (2018). Knowledge, fairness, and social constraints. In Proceedings of the 32nd conference on artificial intelligence (AAAI-18) (pp. 4638–4645). AAAI Press, New Orleans, Louisiana, USA.Google Scholar
  7. 7.
    Aziz, H., Hougaard, J. L., Moreno-Ternero, J. D., & Østerdal, L. P. (2017). Computational aspects of assigning agents to a line. Mathematical Social Sciences, 90, 93–99.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Aziz, H., Schlotter, I., & Walsh, T. (2016). Control of fair division. In Proceedings of the 25th international joint conference on artificial intelligence (IJCAI-16) (pp. 67–73). IJCAI/AAAI Press, New York, NY, USA.Google Scholar
  9. 9.
    Bade, S. (2019). Matching with single-peaked preferences. Journal of Economic Theory, 180, 81–99.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bei, X., Qiao, Y., & Zhang, S. (2017). Networked fairness in cake cutting. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI-17) (pp. 3632–3638). International Joint Conferences on Artificial Intelligence, Melbourne, Australia.Google Scholar
  12. 12.
    Berman, P., Karpinski, M., & Scott, A. D. (2003). Approximation hardness of short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity (ECCC) (49).Google Scholar
  13. 13.
    Bilò, V., Caragiannis, I., Flammini, M., Igarashi, A., Monaco, G., Peters, et al. (2019). Almost envy-free allocations with connected bundles. In Proceedings of the 10th conference on innovations in theoretical computer science (ITCS-19), San Diego, California, USA.Google Scholar
  14. 14.
    Black, D. (1948). On the rationale of group decision-making. Journal of Political Economy, 56(1), 23–34.CrossRefGoogle Scholar
  15. 15.
    Black, D., Newing, R. A., McLean, I., McMillan, A., & Monroe, B. L. (1958). The theory of committees and elections. Berlin: Springer.Google Scholar
  16. 16.
    Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., & Peters, D. (2017). Fair division of a graph. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI-17) (pp. 135–141). International Joint Conferences on Artificial Intelligence, Melbourne, Australia.Google Scholar
  17. 17.
    Bouveret, S., Chevaleyre, Y., & Maudet, N. (2016). Fair allocation of indivisible goods. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of computational social choice, Chap. 12 (pp. 284–310). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. 18.
    Bouveret, S., & Lemaître, M. (2016). Characterizing conflicts in fair division of indivisible goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2), 259–290.CrossRefGoogle Scholar
  19. 19.
    Bredereck, R., Kaczmarczyk, A., & Niedermeier, R. (2018). Envy-free allocations respecting social networks. In Proceedings of the 17th international conference on autonomous agents and multiagent systems (AAMAS-18) (pp. 283–291). ACM, Stockholm, Sweden.Google Scholar
  20. 20.
    Burkard, R., Dell’Amico, M., & Martello, S. (2012). Assignment problems. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefzbMATHGoogle Scholar
  21. 21.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., & Kyropoulou, M. (2009). On low-envy truthful allocations. In Proceedings of the 1st international conference on algorithmic decision theory (ADT-09) (pp. 111–119). Springer, Venice, Italy.Google Scholar
  22. 22.
    Cato, S. (2010). Local strict envy-freeness in large economies. Mathematical Social Sciences, 59(3), 319–322.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chevaleyre, Y., Endriss, U., & Maudet, N. (2017). Distributed fair allocation of indivisible goods. Artificial Intelligence, 242, 1–22.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Damamme, A., Beynier, A., Chevaleyre, Y., & Maudet, N. (2015). The power of swap deals in distributed resource allocation. In Proceedings of the 14th international conference on autonomous agents and multiagent systems (AAMAS-15) (pp. 625–633). ACM, Istanbul, Turkey.Google Scholar
  25. 25.
    de Keijzer, B., Bouveret, S., Klos, T., & Zhang, Y. (2009). On the complexity of efficiency and envy-freeness in fair division of indivisible goods with additive preferences. In Proceedings of the 1st international conference on algorithmic decision theory (ADT-09) (pp. 98–110). Springer, Venice, Italy.Google Scholar
  26. 26.
    Dickerson, J. P., Goldman, J. R., Karp, J., Procaccia, A. D., & Sandholm, T. (2014). The computational rise and fall of fairness. In Proceedings of the 28th conference on artificial intelligence (AAAI-14) (pp. 1405–1411). AAAI Press, Québec City, Québec, Canada.Google Scholar
  27. 27.
    Feldman, A., & Kirman, A. (1974). Fairness and envy. The American Economic Review, 64(6), 995–1005.Google Scholar
  28. 28.
    Feldman, M., Lai, K., & Zhang, L. (2009). The proportional-share allocation market for computational resources. IEEE Transactions on Parallel and Distributed Systems, 20(8), 1075–1088.CrossRefGoogle Scholar
  29. 29.
    Fellows, M. R., Hermelin, D., Rosamond, F., & Vialette, S. (2009). On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1), 53–61.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Festinger, L. (1954). A theory of social comparison process. Human Relations, 7(2), 117–140.CrossRefGoogle Scholar
  31. 31.
    Flammini, M., Mauro, M., & Tonelli, M. (2018). On social envy-freeness in multi-unit markets. In Proceedings of the 32nd conference on artificial intelligence (AAAI-18) (pp. 1031–1038). AAAI Press, New Orleans, Louisiana, USA.Google Scholar
  32. 32.
    Foley, D. K. (1967). Resource allocation and the public sector. Yale Economic Essays, 7(1), 45–98.Google Scholar
  33. 33.
    Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York, NY: W. H. Freeman.zbMATHGoogle Scholar
  34. 34.
    Gehrlein, W. V., & Fishburn, P. C. (1976). The probability of the paradox of voting: A computable solution. Journal of Economic Theory, 13(1), 14–25.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gourvès, L., Lesca, J., & Wilczynski, A. (2017). Object allocation via swaps along a social network. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI-17) (pp. 213–219). International Joint Conferences on Artificial Intelligence, Melbourne, Australia.Google Scholar
  36. 36.
    Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th python in science conference (SciPy-08) (pp. 11 – 15). Pasadena, CA USA.Google Scholar
  37. 37.
    Hylland, A., & Zeckhauser, R. (1979). The efficient allocation of individuals to positions. Journal of Political Economy, 87(2), 293–314.CrossRefzbMATHGoogle Scholar
  38. 38.
    Igarashi, A., & Peters, D. (2019). Pareto-optimal allocation of indivisible goods with connectivity constraints. In Proceedings of the 33rd conference on artificial intelligence (AAAI-19), Honolulu, Hawaii, USA (to appear).Google Scholar
  39. 39.
    Kleinberg, J. M., & Tardos, É. (2006). Algorithm design. Reading: Addison-Wesley.Google Scholar
  40. 40.
    Kondratev, A. Y., Nesterov, A. S. (2019). Minimal envy and popular matchings. CoRR arXiv:1902.08003.Google Scholar
  41. 41.
    Lipton, R. J., Markakis, E., Mossel, E., Saberi, A. (2004). On approximately fair allocations of indivisible goods. In Proceedings of the 5th ACM conference on electronic commerce (EC-04) (pp. 125–131). ACM, New York, NY, USA.Google Scholar
  42. 42.
    Nguyen, T. T., & Rothe, J. (2014). Minimizing envy and maximizing average Nash social welfare in the allocation of indivisible goods. Discrete Applied Mathematics, 179, 54–68.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Paschos, V. T. (1992). A ($\Delta $/2)-approximation algorithm for the maximum independent set problem. Information Processing Letters, 44(1), 11–13.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Saffidine, A., & Wilczynski, A. (2018). Constrained swap dynamics over a social network in distributed resource reallocation. In Proceedings of the 11th international symposium on algorithmic game theory (SAGT-18) (pp. 213–225). Springer, Beijing, China.Google Scholar
  45. 45.
    Steger, A., & Wormald, N. C. (1999). Generating random regular graphs quickly. Combinatorics, Probability and Computing, 8(4), 377–396.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Suksompong, W. (2019). Fairly allocating contiguous blocks of indivisible items. Discrete Applied Mathematics, 260, 227–236.MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Svensson, L. G. (1999). Strategy-proof allocation of indivisible goods. Social Choice and Welfare, 16(4), 557–567.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Vazirani, V. V. (2001). Approximation algorithms. Berlin: Springer.zbMATHGoogle Scholar
  49. 49.
    Zhou, L. (1990). On a conjecture by Gale about one-sided matching problems. Journal of Economic Theory, 52(1), 123–135.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire d’Informatique de Paris 6, LIP6Sorbonne Université, CNRSParisFrance
  2. 2.LAMSADEUniversité Paris-Dauphine, PSL, CNRSParisFrance

Personalised recommendations