Autonomous Agents and Multi-Agent Systems

, Volume 30, Issue 2, pp 291–330 | Cite as

Preference-based reasoning in BDI agent systems

  • Simeon Visser
  • John Thangarajah
  • James Harland
  • Frank Dignum


An important feature of BDI agent systems is number of different ways in which an agent can achieve its goals. The choice of means to achieve the goal in made by the system at run time, depending on contextual information that is not available in advance. In this article, we explore ways that the user of an agent system can specify preferences which can be incorporated into the BDI execution process and used to guide the choices made. For example, a user of a travel system can specify a preferred airline, or a particular kind of accommodation, and the system will use this information to satisfy the goal and preferences, if possible. Preferences are specified in terms of properties of goals and resource usage, and are used to make two types of decisions: (a) select a plan when there is a choice and (b) determine the order in which subgoals of a plan should be pursued when their order is not fixed by design. We have implemented our preference framework in Jadex, and provide detailed case studies within the context of a holiday travel agent application.


Agent programming languages Reasoning (single and multiagent) Preference reasoning 


  1. 1.
    Baier, J.A., & McIlraith, S.A. (2007). On domain-independent heuristics for planning with qualitative preferences. In 7th Workshop on Nonmonotonic Reasoning, Action and Change (NRAC).Google Scholar
  2. 2.
    Bienvenu, M., Fritz, C., & McIlraith, S.A. (2006). Planning with qualitative temporal preferences. In KR (pp. 134–144). AAAI Press.Google Scholar
  3. 3.
    Boutilier, C., Reiter, R., Soutchanski, M., & Thrun, S. (2000). Decision-theoretic, high-level agent programming in the situation calculus. In AAAI (pp. 355–362). AAAI Press/The MIT Press.Google Scholar
  4. 4.
    Busetta, P., Ronnquist, R., Hodgson, A., & Lucas, A. (1999). Jack intelligent agents—components for intelligent agents in java.Google Scholar
  5. 5.
    Clement, B.J., & Durfee, E.H. (1999). Theory for coordinating concurrent hierarchical planning agents using summary information. In AAAI (pp. 495–502).Google Scholar
  6. 6.
    Clement, B.J., & Durfee, E.H. (1999). Top-down search for coordinating the hierarchical plans of multiple agents. In Agents (pp. 252–259).Google Scholar
  7. 7.
    Dasgupta, A., & Ghose, A. K. (2011). Bdi agents with objectives and preferences. In A. Omicini, S. Sardina, & W. Vasconcelos (Eds.), Declarative agent languages and technologies VIII. Lecture notes in computer science (Vol. 6619, pp. 22–39). Berlin: Springer.CrossRefGoogle Scholar
  8. 8.
    Fikes, R., & Nilsson, N. J. (1971). Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2(3/4), 189–208.CrossRefMATHGoogle Scholar
  9. 9.
    Fox, M., & Long, D. (2003). Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research (JAIR), 20, 61–124.MATHGoogle Scholar
  10. 10.
    Fritz, C., & McIlraith, S. (2005). Compiling qualitative preferences into decision-theoretic golog programs. In Proceedings of The 6th Workshop on Nonmonotonic Reasoning, Action, and Change. Edinburgh, UK.Google Scholar
  11. 11.
    Fritz, C., & McIlraith, S. (2006). Decision-theoretic golog with qualitative preferences. In Proceedings of KR’2006 (pp. 153–163). Lake District, UK.Google Scholar
  12. 12.
    Gerevini, A., & Long, D. (2005). Plan constraints and preferences in pddl3—The language of the fifth international planning competition. Technical report.Google Scholar
  13. 13.
    Ghallab, M., Isi, C.K., Penberthy, S., Smith, D.E., Sun, Y., & Weld, D. (1998). Pddl—The planning domain definition language. Technical report, CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.Google Scholar
  14. 14.
    Hindriks, K. V., Jonker, C. M., & Pasman, W. (2008). Exploring heuristic action selection in agent programming. ProMAS. Lecture notes in computer science (Vol. 5442, pp. 24–39). Berlin: Springer.Google Scholar
  15. 15.
    Hindriks, K. V., & Birna van Riemsdijk, M. (2008). Using temporal logic to integrate goals and qualitative preferences into agent programming. DALT. Lecture notes in computer science (Vol. 5397, pp. 215–232). Berlin: Springer.Google Scholar
  16. 16.
    Ingrand, F. F., Georgeff, M. P., & Rao, A. S. (1992). An architecture for real-time reasoning and system control. IEEE Expert, 7(6), 34–44.CrossRefGoogle Scholar
  17. 17.
    Myers, K.L., & Morley, D.N. (2001). Human directability of agents. In K-CAP (pp. 108–115). ACM.Google Scholar
  18. 18.
    Myers, K.L., & Morley, D.N. (2002). Resolving conflicts in agent guidance. In Proceedings of the AAAI-02 Workshop on Preferences in AI and CP: Symbolic Approaches.Google Scholar
  19. 19.
    Nguyen, A., & Wobcke, W. (2006). An adaptive plan-based dialogue agent: Integrating learning into a bdi architecture. In AAMAS (pp. 786–788). ACM.Google Scholar
  20. 20.
    Padgham, L., & Singh, D. (2013). Situational preferences for bdi plans. In M.L. Gini, O. Shehory, T. Ito, & C.M. Jonker (Eds) AAMAS (pp. 1013–1020). IFAAMAS.Google Scholar
  21. 21.
    Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. Multi-agent programming (Vol. 9, pp. 149–174). New York: Springer.CrossRefGoogle Scholar
  22. 22.
    Rao, A.S., & Georgeff, M.P. (1992). An abstract architecture for rational agents. In KR (pp. 439–449).Google Scholar
  23. 23.
    Rnnquist, R. (2007). The goal oriented teams (gorite) framework. In M. Dastani, A. El Fallah-Seghrouchni, A. Ricci, & M. Winikoff (Eds.), PROMAS. Lecture notes in computer science (Vol. 4908, pp. 27–41). Berlin: Springer.Google Scholar
  24. 24.
    Shaw, P. H., & Bordini, R. H. (2007). Towards alternative approaches to reasoning about goals. In M. Baldoni, T. Cao Son, M. Birna van Riemsdijk, & M. Winikoff (Eds.), DALT. Lecture notes in computer science (Vol. 4897, pp. 104–121). Berlin: Springer.Google Scholar
  25. 25.
    Shaw, P. H., & Bordini, R. H. (2010). An alternative approach for reasoning about the goal-plan tree problem. In H. Coelho, R. Studer, & M. Wooldridge (Eds.), ECAI. Frontiers in artificial intelligence and applications (Vol. 215, pp. 1035–1036). Amsterdam: IOS Press.Google Scholar
  26. 26.
    Shaw, P.H., Farwer, B., & Bordini, R.H. (2008). Theoretical and experimental results on the goal-plan tree problem. In L. Padgham, D.C. Parkes, J.P. Müller, & S. Parsons (Eds), AAMAS (3) (pp. 1379–1382). IFAAMAS.Google Scholar
  27. 27.
    Thangarajah, J., Padgham, L., & Winikoff, M. (2003). Detecting & exploiting positive goal interaction in intelligent agents. In AAMAS (pp. 401–408). ACM.Google Scholar
  28. 28.
    Thangarajah, J., Sardiña, S., & Padgham, L. (2012). Measuring plan coverage and overlap for agent reasoning. In W. van der Hoek, L. Padgham, V. Conitzer, & M. Winikoff (Eds), AAMAS (pp. 1049–1056). IFAAMAS.Google Scholar
  29. 29.
    Thangarajah, J., Winikoff, M., Padgham, L., & Fischer, K. (2002). Avoiding resource conflicts in intelligent agents. In ECAI (pp. 18–22). IOS Press.Google Scholar
  30. 30.
    Toranzo, C., Errecalde, M., & Ferretti, E. (2014). A framework for multi-criteria argumentation-based decision making within a bdi agent. Journal of Computer Science and Technology, 14(1), 46–54.Google Scholar
  31. 31.
    Winikoff, M., & Cranefield, S. On the testability of bdi agent systems. Discussion Paper 2008/03, Department of Information Science, University of Otago, Accessed 15 Jan 2015.

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Simeon Visser
    • 1
  • John Thangarajah
    • 2
  • James Harland
    • 2
  • Frank Dignum
    • 1
  1. 1.Utrecht UniversityUtrechtThe Netherlands
  2. 2.RMIT UniversityMelbourneAustralia

Personalised recommendations