Autonomous Agents and Multi-Agent Systems

, Volume 30, Issue 1, pp 60–81 | Cite as

NegoChat-A: a chat-based negotiation agent with bounded rationality

  • Avi Rosenfeld
  • Inon Zuckerman
  • Erel Segal-Halevi
  • Osnat Drein
  • Sarit Kraus


To date, a variety of automated negotiation agents have been created. While each of these agents has been shown to be effective in negotiating with people in specific environments, they typically lack the natural language processing support required to enable real-world types of interactions. To address this limitation, we present NegoChat-A, an agent that incorporates several significant research contributions. First, we found that simply modifying existing agents to include an natural language processing module is insufficient to create these agents. Instead, agents that support natural language must have strategies that allow for partial agreements and issue-by-issue interactions. Second, we present NegoChat-A’s negotiation algorithm. This algorithm is based on bounded rationality, and specifically anchoring and aspiration adaptation theory. The agent begins each negotiation interaction by proposing a full offer, which serves as its anchor. Assuming this offer is not accepted, the agent then proceeds to negotiate via partial agreements, proposing the next issue for negotiation based on people’s typical urgency, or order of importance. We present a rigorous evaluation of NegoChat-A, showing its effectiveness in two different negotiation roles.


Human-agent interactions Negotiation Algorithms 


  1. 1.
    Hoppman, P. T. (1996). The negotiation process and the resolution of international conflicts. Columbia: University of South Carolina Press.Google Scholar
  2. 2.
    Byde, A., Yearworth, M., Chen, K.-Y., Bartolini, C., Aut ONA. (2003). A system for automated multiple 1–1 negotiation. In International Conference on Electronic Commerce.Google Scholar
  3. 3.
    Jonker, C. M., Robu, V., & Treur, J. (2007). An agent architecture for multi-attribute negotiation using incomplete preference information. Autonomous Agents and Multi-Agent Systems, 15(2), 221–252.CrossRefGoogle Scholar
  4. 4.
    Lin, R., & Kraus, S. (2010). Can automated agents proficiently negotiate with humans? Communications of the ACM, 53(1), 78–88.CrossRefGoogle Scholar
  5. 5.
    Lin, R., Kraus, S., Wilkenfeld, J., & Barry, J. (2008). Negotiating with bounded rational agents in environments with incomplete information using an automated agent. Artificial Intelligence, 172(6–7), 823–851.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Oshrat, Y., Lin, R., Kraus, S. (2009). Facing the challenge of human-agent negotiations via effective general opponent modeling, In AAMAS.Google Scholar
  7. 7.
    Peled, N., Gal, Y. K., Kraus, S. (2011). A study of computational and human strategies in revelation games. In AAMAS.Google Scholar
  8. 8.
    Peled, N., Gal, Y. K., Kraus, S. (2014). A study of computational and human strategies in revelation games. Autonomous Agents and Multi-Agent Systems 1–25.Google Scholar
  9. 9.
    Reyhan, A., & Pinar, Y. (2012). Learning opponents preferences for effective negotiation: An approach based on concept learning. Journal of Autonomous Agents and Multi-Agent Systems, 24(1), 104–140.Google Scholar
  10. 10.
    Rosenfeld, A., Zuckerman, I., Segal-Halevi, E., Drein, O., Kraus, S. (2014). Negochat: a chat-based negotiation agent. In International conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14 (pp. 525–532).Google Scholar
  11. 11.
    Kahneman, D. (1992). Reference points, anchors, norms, and mixed feelings. Organizational Behavior and Human Decision Processes, 51(2), 296–312.CrossRefGoogle Scholar
  12. 12.
    Kristensen, H., & Garling, T. (1997). The effects of anchor points and reference points on negotiation process and outcome. Organizational Behavior and Human Decision Processes, 71(1), 85–94.CrossRefGoogle Scholar
  13. 13.
    Selten, R. (1998). Aspiration adaptation theory. Journal of Mathematical Psychology, 42, 1910–214.CrossRefGoogle Scholar
  14. 14.
    Coen, M.H. (1998). Design principles for intelligent environments. In AAAI/IAAI.Google Scholar
  15. 15.
    Cohen, P. R. (1992). The role of natural language in a multimodal interface. In UIST.Google Scholar
  16. 16.
    Kenny, P., Hartholt, A., Gratch, J., Swartout, W., Traum, D., Marsella, S., Piepol, D. (2007). Building interactive virtual humans for training environments. In I/ITSEC.Google Scholar
  17. 17.
    Shneiderman, B., & Plaisant, C. (2004). Designing the user interface: Strategies for effective human-computer interaction. Noida: Pearson Education India.Google Scholar
  18. 18.
    Traum, D., Marsella, S., Gratch, J., Lee, J., Hartholt, A. (2008). Multi-party, multi-issue, multi-strategy negotiation for multi-modal virtual agents. In Intelligent Virtual Agents (pp. 117–130).Google Scholar
  19. 19.
    Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K. V., Ito, T., Jennings, N. R., et al. (2011). Evaluating practical negotiating agents: Results and analysis of the 2011 international competition. Artificial Intelligence, 198(2013), 73–103.Google Scholar
  20. 20.
    Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K. V., & Jonker, C. M. (2014). Genius: An integrated environment for supporting the design of generic automated negotiators. Computational Intelligence, 30(1), 48–70.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zuckerman, I., Rosenfeld, A., Segal-Halevi, E., Drein, O., Kraus, S. (2013). Towards automated negotiation agents that use chat interfaces. In ANAC.Google Scholar
  22. 22.
    Bac, M., & Raff, H. (1996). Issue-by-issue negotiations: The role of information and time preference. Games and Economic Behavior, 13(1), 125–134.MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Busch, L.-A., & Horstmann, I. (1997). A comment on issue-by-issue negotiations. Games and Economic Behavior, 19(1), 144–148.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Chen, M. K. (2002). Agendas in multi-issue bargaining: When to sweat the small stuff. Cambridge: Tech. rep Harvard Department of Economics.Google Scholar
  25. 25.
    Sofer, I., Sarne, D., Hassidim, A. (2012). Negotiation in exploration-based environment. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence.Google Scholar
  26. 26.
    Rosenfeld, A., & Kraus, S. (2012). Modeling agents based on aspiration adaptation theory. Autonomous Agents and Multi-Agent Systems, 24(2), 221–254.CrossRefGoogle Scholar
  27. 27.
    Simon, H. A. (1957). Models of Man. New York: Wiley.MATHGoogle Scholar
  28. 28.
    Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge: MIT Press.MATHGoogle Scholar
  29. 29.
    Jurafsky, D., & Martin, J. H. (2008). Speech and language processing (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  30. 30.
    Tsoumakas, G., Katakis, I., Vlahavas, I. (2008). Effective and efficient multilabel classification in domains with large number of labels. In Proceedings of the ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD’08).Google Scholar
  31. 31.
    Carvalho, V. R., Cohen, W. W. (2006). In KDD (pp. 548–553).Google Scholar
  32. 32.
    Hahn, S., Dinarelli, M., Raymond, C., Lefevre, F., Lehnen, P., de Mori, R., et al. (2011). IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 1569–1583.Google Scholar
  33. 33.
    Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive-aggressive algorithms. Journal of Machine Learning Research, 7, 551–585.MATHMathSciNetGoogle Scholar
  34. 34.
    Tang, L., Rajan, S., Narayanan, V. K. (2009). Large scale multi-label classification via metalabeler. In Proceedings of the 18th international conference on World wide web, WWW ’09, ACM (pp. 211–220).Google Scholar
  35. 35.
    Morbini, F., Sagae, K. (2011). Joint identification and segmentation of domain-specific dialogue acts for conversational dialogue systems. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics (pp. 95–100).Google Scholar
  36. 36.
    Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive experimental comparison of methods for multi-label learning. Pattern Recognition, 45(9), 3084–3104.CrossRefGoogle Scholar
  37. 37.
    Kocev, D., Vens, C., Struyf, J., & Džeroski, S. (2013). Tree ensembles for predicting structured outputs. Pattern Recognition, 46(3), 817–833.CrossRefGoogle Scholar
  38. 38.
    Leuski, A., & Traum, D. (2008). A statistical approach for text processing in virtual humans. Tech. rep, University of Southern California, Institute for Creative Technologies.Google Scholar
  39. 39.
    Dagan, I., Roth, D., Sammons, M., & Zanzotto, F. M. (2013). Recognizing textual entailment: Models and applications. Synthesis Lectures on Human Language Technologies, 6(4), 1–220.CrossRefGoogle Scholar
  40. 40.
    Baarslag, T., Hindriks, K., & Jonker, C. M. (2014). Effective acceptance conditions in real-time automated negotiation. Decision Support Systems, 60, 68–77.CrossRefGoogle Scholar
  41. 41.
    Jonker, C.M., Robu, V., Treur, J. An agent architecture for multi-attribute negotiation using incomplete preference information. Autonomous Agents and Multi-Agent Systems Journal 15.Google Scholar
  42. 42.
    Visser, W., Aydogan, R., Hindriks, K., Jonker, C. M. (2012). A framework for qualitative multi-criteria preferences. In 4th International Conference on Agents and Artificial Intelligence.Google Scholar
  43. 43.
    Azaria, A., Rabinovich, Z., Kraus, S., Goldman, C. V., Gal, Y. (2012). Strategic advice provision in repeated human-agent interactions. In AAAI.Google Scholar
  44. 44.
    Wilkenfeld, J., Kraus, S., Holley, K. M., & Harris, M. A. (1995). Genie: A decision support system for crisis negotiations. Decision Support Systems, 14(4), 369–391.CrossRefGoogle Scholar
  45. 45.
    Pommeranz, A., Wiggers, P., Brinkman, W. P., Jonker, C. M. Social acceptance of negotiation support systems: Scenario-based exploration with focus groups and online survey, Cognition, Technology and Work.Google Scholar
  46. 46.
    Lin, R., Gev, Y., & Kraus, S. (2011). Bridging the gap: Face-to-face negotiations with an automated mediator. IEEE Intelligent Systems, 26(6), 40–47.CrossRefGoogle Scholar
  47. 47.
    Chalamish, M., & Kraus, S. (2012). Automed: An automated mediator for multi-issue bilateral negotiations. Autonomous Agents and Multi-Agent Systems, 24(3), 536–564.CrossRefGoogle Scholar
  48. 48.
    Rahwan, I., Ramchurn, S. D., Jennings, N. R., Mcburney, P., Parsons, S., & Sonenberg, L. (2003). Argumentation-based negotiation. The Knowledge Engineering Review, 18(4), 343–375.CrossRefGoogle Scholar
  49. 49.
    Rosenfeld, A., Kraus, S. (2012). Providing arguments in discussions based on the prediction of human argumentative behavior. In AAAI.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Avi Rosenfeld
    • 1
  • Inon Zuckerman
    • 2
  • Erel Segal-Halevi
    • 3
  • Osnat Drein
    • 3
  • Sarit Kraus
    • 3
  1. 1.Department of Industrial EngineeringJerusalem College of TechnologyJerusalemIsrael
  2. 2.Department of Industrial Engineering and ManagementAriel UniversityArielIsrael
  3. 3.Department of Computer ScienceBar-Ilan UniversityRamat GanIsrael

Personalised recommendations