Autonomous Agents and Multi-Agent Systems

, Volume 29, Issue 6, pp 1061–1090 | Cite as

An influence diagram based multi-criteria decision making framework for multirobot coalition formation

Article

Abstract

Novel systems allocating coalitions of humans and unmanned heterogeneous vehicles will act as force multipliers for future real-world missions. Conventional coalition formation architectures seek to compute efficient robot coalitions by leveraging either a single greedy, approximation, or market-based algorithm, which renders such architectures inapplicable to a variety of real-world mission scenarios. A novel, intelligent multi-criteria decision making framework is presented that reasons over a library of coalition formation algorithms for selecting the most appropriate subset of algorithm(s) to apply to a wide spectrum of complex missions. The framework is based on influence diagrams in order to handle uncertainties in dynamic real-world environments. An existing taxonomy comprised of multiple mission and domain dependent features is leveraged to classify the coalition formation algorithms. Dimensionality reduction is achieved via principal component analysis, which extracts the most significant taxonomy features crucial for decision making. A link analysis technique provides the mission specific utility values of each feature-value pair and algorithm in the library. Experimental results demonstrate that the presented framework accurately selects the most appropriate subset of coalition formation algorithm(s) based on multiple mission criteria, when applied to a number of simulated real-world mission scenarios.

Keywords

Coalition formation Influence diagrams Link analysis Multi-criteria decision making 

Notes

Acknowledgments

This research has been supported by an ONR DEPSCOR Award # N000140911161.

References

  1. 1.
    Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Service, T.C., Adams, J.A. (2011). Coalition formation for task allocation: Theory and algorithms. Journal of Autonomous Agents and Multi-agent Systems, 22(2), 225–248.CrossRefGoogle Scholar
  3. 3.
    Abdallah, S., & Lesser, V. (2004). Organization-based cooperative coalition formation. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 162–168.Google Scholar
  4. 4.
    Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial Intelligence, 101, 165–200.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tošić, P. T., & Agha, G. A. (2005). Maximal clique based distributed coalition formation for task allocation in large-scale multi-agent systems. In: Proceedings of the Massively Multi-Agent Systems, I, 104–120.Google Scholar
  6. 6.
    Vig, L., & Adams, J. A. (2006b). Multi-robot coalition formation. IEEE Transactions on Robotics, 22(4), 637–649.CrossRefGoogle Scholar
  7. 7.
    Dang, V. D., & Jennings, N. (2004). Generating coalition structures with finite bound from the optimal guarantees. In: Proceedings of the Third International Joint Conference on Autonomous Agents and MultiAgent Systems, pp. 564–571.Google Scholar
  8. 8.
    Rahwan, T., Ramchurn, S., Jennings, N., & Giovannucci, A. (2009). An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.MathSciNetMATHGoogle Scholar
  9. 9.
    Rothkopf, M. H., Pekeč, A., & Harstad, R. M. (1998). Computationally manageable combinational auctions. Management Science, 44(8), 1131–1147.CrossRefMATHGoogle Scholar
  10. 10.
    Gerkey, B., & Matarić, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5), 758–768.CrossRefGoogle Scholar
  11. 11.
    Shiroma, P. M., & Campos, M. F. M. (2009). CoMutaR: A framework for multi-robot coordination and task allocation. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 4817–4824.Google Scholar
  12. 12.
    Vig, L., & Adams, J. A. (2006a) Market-based multi-robot coalition formation. In: Proceedings of the 8th International Symposium on Distributed Autonomous Robotic Systems, pp. 227–236.Google Scholar
  13. 13.
    DeJong, P. (2005). Coalition formation in multi-agent UAV systems. MS Thesis, University of Central Florida.Google Scholar
  14. 14.
    Service, T. C., & Adams, J. A. (2010). Coalition formation algorithm taxonomy. Tech. Rep. HMT-10-03, Vanderbilt University.Google Scholar
  15. 15.
    Kjærulff, U. B., & Madsen, A. L. (2008). Bayesian networks and influence diagrams: A guide to construction and analysis. Information Science and Statistics. New York, NY: Springer.CrossRefGoogle Scholar
  16. 16.
    Zhang, G., Jiang, J., Su, Z., Qi, M., & Fang, H. (2010). Searching for overlapping coalitions in multiple virtual organizations. Information Sciences, 180(17), 3140–3156.CrossRefGoogle Scholar
  17. 17.
    Weerdt, M., Zhang, Y., & Klos, T. (2007). Distributed task allocation in social networks. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 17–24.Google Scholar
  18. 18.
    Gaston, M. E., & desJardins, M. (2005). Agent organized networks for dynamic team formation. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 230–237.Google Scholar
  19. 19.
    Sujit, P. B., George, J. M., & Beard, R. W. (2008). Multiple UAV coalition formation. In: Proceedings of the American Control Conference, pp. 2010–2015.Google Scholar
  20. 20.
    Campbell, A., Wu, A. S., & Shumaker, R. (2008). Multi-agent task allocation: Learning when to say no. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 201–208.Google Scholar
  21. 21.
    Koes, M., Nourbakhsh, I., & Sycara, K. (2005). Heterogeneous multirobot coordination with spatial and temporal constraints. In: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 1292–1297.Google Scholar
  22. 22.
    Ramchurn, S. D., Polukarov, M., Farinelli, A., Truong, C., & Jennings, N. R. (2010). Coalition formation with spatial and temporal constraints. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 1181–1188.Google Scholar
  23. 23.
    Service, T.C., Adams, J.A. (2011). Constant factor approximation algorithms for coalition structure generation. Journal of Autonomous Agents and Multi-Agent Systems, 23(1), 1–17.CrossRefGoogle Scholar
  24. 24.
    Service, T. C., Sen, S. D., & Adams, J. A. (2014). A simultanesous descending auction for multirobot task allocation. In: Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics.Google Scholar
  25. 25.
    Cao, Y. U., Fukunaga, A. S., & Kahng, A. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4(1), 7–27.CrossRefGoogle Scholar
  26. 26.
    Dudek, G., Jenkin, M., & Milios, E. (2002). A taxonomy of multirobot systems. In T. Balch & L. E. Parker (Eds.), Robot teams: From diversity to polymorphism (pp. 3–22). Natick, MA: AK Peters Ltd.Google Scholar
  27. 27.
    Farinelli, A., Iocchi, L., & Nardi, D. (2004). Multirobot systems: A classification focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(5), 2015–2028.CrossRefGoogle Scholar
  28. 28.
    Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954.CrossRefGoogle Scholar
  29. 29.
    Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Page, L., Sergey, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Tech. Rep. 1999–66, Stanford InfoLab, Stanford University.Google Scholar
  31. 31.
    Jolliffe, I. (1972). Discarding variables in a principal component analysis. I: Artificial data. Journal of the Royal Statistics Society. Series C (Applied Statistics), 21(2), 160–173.MathSciNetGoogle Scholar
  32. 32.
    Song, F., Guo, Z., & Mei, D. (2010). Feature selection using principal component analysis. In: Proceedings of the International Conference on System Science, Engineering Design and Manufacturing Informatization, pp. 27–30.Google Scholar
  33. 33.
    Dunteman, G. H. (1989). Principal components analysis, vol. 69. Newbury Park, CA: Sage Publications.Google Scholar
  34. 34.
    Yu, Q., & Terzopoulos, D. (2007). A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128.Google Scholar
  35. 35.
    Sen, S. D., & Adams, J. A. (2013). A decision network based framework for multiagent coalition formation. In: Proceedings of the 12th International Conference on Autonomous Agents and Multi-agent Systems, pp. 55–62.Google Scholar
  36. 36.
    Cohen, M. D. (1984). Coping with complexity: The adaptive value of changing utility. The American Economic Review, 74(1), 30–42.Google Scholar
  37. 37.
    Cyert, R. M., DeGroot, M. H. (1979) Adaptive utility. In: Expected Utility Hypotheses and the Allais Paradox, pp. 223–241. Netherlands: SpringerGoogle Scholar
  38. 38.
    Nielsen, T. D., & Jensen, F. V. (2004). Learning a decision maker’s utility function from (possibly) inconsistent behavior. Artificial Intelligence, 160(1), 53–78.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Grüne-Yanoff, T., & Hansson, S. O. (2009). Preference change: An introduction. In: Preference Change, pp. 1–26. Netherlands: SpringerGoogle Scholar
  40. 40.
    Neumann, L. J., & Morgenstern, O. (1947). Theory of games and economic behavior. Princeton, NJ: Princeton University Press.MATHGoogle Scholar
  41. 41.
    Nokia: Qt. (2012). http://www.qt.io/. Accessed 7 Jan 2012.
  42. 42.
    NORSYS: Netica application: A complete software package to solve problems using bayesian belief networks and influence diagrams. (2012). http://www.norsys.com/netica.html. Accessed 12 June 2012

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleUSA

Personalised recommendations