Autonomous Agents and Multi-Agent Systems

, Volume 28, Issue 1, pp 101–125 | Cite as

Self-organized task allocation to sequentially interdependent tasks in swarm robotics

  • Arne Brutschy
  • Giovanni Pini
  • Carlo Pinciroli
  • Mauro Birattari
  • Marco Dorigo


In this article we present a self-organized method for allocating the individuals of a robot swarm to tasks that are sequentially interdependent. Tasks that are sequentially interdependent are common in natural and artificial systems. The proposed method does neither rely on global knowledge nor centralized components. Moreover, it does not require the robots to communicate. The method is based on the delay experienced by the robots working on one subtask when waiting for input from another subtask. We explore the capabilities of the method in different simulated environments. Additionally, we evaluate the method in a proof-of-concept experiment using real robots. We show that the method allows a swarm to reach a near-optimal allocation in the studied environments, can easily be transferred to a real robot setting, and is adaptive to changes in the properties of the tasks such as their duration. Finally, we show that the ideal setting of the parameters of the method does not depend on the properties of the environment.


Swarm robotics Foraging Self-organization Task allocation  Swarm intelligence Multi-agent systems 



The research leading to the results presented in this paper has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 246939. Marco Dorigo, Mauro Birattari, and Arne Brutschy acknowledge support from the Belgian F.R.S.–FNRS. Giovanni Pini acknowledges support from Université Libre de Bruxelles through the “Fonds David & Alice Van Buuren”.


  1. 1.
    Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. Proceedings of the first international joint conference on autonomous agents and multi-agent systems (AAMAS-02) (pp. 1090–1097). New York: ACM Press.Google Scholar
  2. 2.
    Anderson, C., & Ratnieks, F. L. W. (1999a). Task partitioning in insect societies. I: Effect of colony size on queueing delay and colony ergonomic efficiency. The American Naturalist, 154(5), 521–535.CrossRefGoogle Scholar
  3. 3.
    Anderson, C., & Ratnieks, F. L. W. (1999b). Task partitioning in insect societies. II: Use of queueing delay information in recruitment. The American Naturalist, 154(5), 536–548.CrossRefGoogle Scholar
  4. 4.
    Anderson, C., & Ratnieks, F. L. W. (2000). Task partitioning in insect societies: Novel situations. Insectes Sociaux, 47(2), 198–199.CrossRefGoogle Scholar
  5. 5.
    Berman, S., Halasz, A., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25, 927–937.CrossRefGoogle Scholar
  6. 6.
    Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.zbMATHGoogle Scholar
  7. 7.
    Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Self-organized task allocation to sequentially interdependent tasks in swarm robotics—Online supplementary material.
  8. 8.
    Campo, A., & Dorigo, M. (2007). Efficient multi-foraging in swarm robotics. In M. Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Advances in artificial life: Proceedings of the VIIIth European conference on artificial life (ECAL 2005) (Vol. 4648, pp. 696–705). Berlin: Springer.Google Scholar
  9. 9.
    Christensen, A. L., O’Grady, R., & Dorigo, M. (2007). Morphology control in a multirobot system. IEEE Robotics and Automation Magazine, 11(6), 732–742.Google Scholar
  10. 10.
    Cicirello, V. A., & Smith, S. F. (2004). Wasp-like agents for distributed factory coordination. Autonomous Agents and Multi-Agent Systems, 8(3), 237–266.CrossRefGoogle Scholar
  11. 11.
    Dahl, T. S., Matarić, M. J., & Sukhat, G. S. (2009). Multi-robot task allocation through vacancy chain scheduling. Robotics and Autonomous Systems, 57, 674–687.CrossRefGoogle Scholar
  12. 12.
    Dasgupta, P. (2011). Multi-robot task allocation for performing cooperative foraging tasks in an initially unknown environment. In L. C. Jain, E. V. Aidman, & C. Abeynayake (Eds.), Innovations in defence support systems 2. Studies in computational intelligence (Vol. 338, pp. 5–20). Berlin: Springer.Google Scholar
  13. 13.
    Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94, 1257–1270.CrossRefGoogle Scholar
  14. 14.
    Dorigo, M. (2005). SWARM-BOT: An experiment in swarm robotics. In P. Arabshahi & A. Martinoli (Eds.), 2005 IEEE swarm intelligence symposium (SIS-05) (pp. 192–200). Piscataway, NJ: IEEE Press.Google Scholar
  15. 15.
    Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics and Automation Magazine (in press).Google Scholar
  16. 16.
    Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., et al. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3), 223–245.CrossRefGoogle Scholar
  17. 17.
    Ferreira, P. R., Boffo, F. S., & Bazzan, A. L. C. (2008). Using Swarm-GAP for distributed task allocation in complex scenarios. In N. Jamali, P. Scerri, & T. Sugawara (Eds.), Massively multi-agent technology. LNCS (Vol. 5043, pp. 107–121). Berlin: Springer.Google Scholar
  18. 18.
    Fowler, H. H., & Robinson, S. W. (1979). Foraging by Atta sexdens (Formicidae: Attini): Seasonal patterns, caste and efficiency. Ecological Entomology, 4(3), 239–247.CrossRefGoogle Scholar
  19. 19.
    Gerkey, B. P., & Matarić, M. J. (2003). Multi-robot task allocation: Analyzing the complexity and optimality of key architectures. In Proceedings of the IEEE international conference on robotics and automation (ICRA 2003) (pp. 3862–3867). Pitscataway, NJ: IEEE Press.Google Scholar
  20. 20.
    Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.CrossRefGoogle Scholar
  21. 21.
    Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., & Stentz, A. (2003). Task allocation using a distributed market-based planning mechanism. In Proceedings of the second international joint conference on autonomous agents and multiagent systems (pp. 996–997). New York, NY: ACM Press.Google Scholar
  22. 22.
    Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics, 22(6), 1115–1130.CrossRefGoogle Scholar
  23. 23.
    Ikemoto, Y., Miura, T., & Asama, H. (2010). Adaptive division-of-labor control algorithm for multi-robot systems. Journal of Robotics and Mechatronics, 22(4), 514–525.Google Scholar
  24. 24.
    Kalra, N., & Martinoli, A. (2006). A comparative study of market-based and threshold-based task allocation. In Distributed autonomous robotic systems 7 (pp. 91–102). Berlin: Springer.Google Scholar
  25. 25.
    Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: Self-organised task allocation in a population of up to twelve mobile robots. Journal of Robotics and Autonomous Systems, 30, 65–84.CrossRefGoogle Scholar
  26. 26.
    Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.CrossRefGoogle Scholar
  27. 27.
    Liu, W., Winfield, A., Sa, J., Chen, J., & Dou, L. (2007). Towards energy optimization: Emergent task allocation in a swarm of foraging robots. Adaptive Behavior, 15(3), 289–305.CrossRefGoogle Scholar
  28. 28.
    Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., et al. (2004). SWARM-BOT: A new distributed robotic concept. Autonomous Robots, 17(2–3), 193–221.CrossRefGoogle Scholar
  29. 29.
    Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm. Self-organized strategies to find your way home. Swarm Intelligence, 2(1), 1–23.CrossRefGoogle Scholar
  30. 30.
    Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRefGoogle Scholar
  31. 31.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2011a). ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2011) (pp. 5027–5034). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  32. 32.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm intelligence, 6(4), 271–295.Google Scholar
  33. 33.
    Pini, G., Brutschy, A., Birattari, M., & Dorigo, M. (2011a). Task partitioning in swarms of robots: Reducing performance losses due to interference at shared resources. In J.-L. Ferrier & J. Filipe (Eds.), Informatics in control, automation and robotics: Selected papers from the international conference on informatics in control, automation and robotics 2009. LNEE (Vol. 85). Berlin: Springer.Google Scholar
  34. 34.
    Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011b). Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.CrossRefGoogle Scholar
  35. 35.
    Ratnieks, F. L. W., & Anderson, C. (1999). Task partitioning in insect societies. Insectes Sociaux, 46(2), 95–108.CrossRefGoogle Scholar
  36. 36.
    Scheidler, A., Merkle, D., & Middendorf, M. (2008). Stability and performance of ant queue inspired task partitioning methods. Theory in Biosciences, 127(2), 149–161.CrossRefMathSciNetGoogle Scholar
  37. 37.
    Theraulaz, G., Bonabeau, E., & Deneubourg, J.-L. (1998). Response threshold reinforcement and division of labour in insect societies. Proceedings: Biological Sciences, 265(1393), 327–332.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Arne Brutschy
    • 1
  • Giovanni Pini
    • 1
  • Carlo Pinciroli
    • 1
  • Mauro Birattari
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, Université Libre de BruxellesBrusselsBelgium

Personalised recommendations