Autonomous Agents and Multi-Agent Systems

, Volume 28, Issue 1, pp 1–30 | Cite as

Enhancing decentralized service discovery in open service-oriented multi-agent systems

  • E. del ValEmail author
  • M. Rebollo
  • V. Botti


Service-oriented multi-agent systems are dynamic systems that are populated by heterogeneous agents. These agents model their functionality as services in order to allow heterogeneous agents or other entities to interact with each other in a standardized way. Furthermore, due to the large-scale and adaptative needs of the system, traditional directory facilitators or middle-agents are not suitable for the management of agent services. This article proposes the introduction of homophily in service-oriented multi-agent systems to create efficient decentralized and self-organized structures where agents have a greater probability of establishing links with similar agents than with dissimilar ones. This similarity is based on two social dimensions: the set of services that an agent provides and the organizational roles that it plays. A second contribution is an algorithm for service discovery that it is carried out taking into account the local information that is related to the homophily between agents. The experiments compare our proposal with other proposals in distributed environments. The results show that the proposed structure and algorithm offer desirable features for service discovery in decentralized environments. Specifically, these features provide short paths and a high success rate in the service discovery process and resilience under deliberate failures.


Service discovery Complex networks Homophily 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamic L. A., Adar E. (2005) How to search a social network. Social Networks 27: 2005CrossRefGoogle Scholar
  2. 2.
    Basters, U., & Klusch, M. (2006). Rs2d: Fast adaptive search for semantic web services in unstructured p2p networks. In: International Semantic Web Conference, Lecture Notes in Computer Science (Vol. 4273, pp. 87–100). Springer.Google Scholar
  3. 3.
    Bianchini D., Antonellis V. D., Melchiori M. (2009) Service-based semantic search in p2p systems. European Conference on Web Services 0: 7–16Google Scholar
  4. 4.
    Bisgin, H., Agarwal, N., & Xu, X. (2010). Investigating homophily in online social networks. Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT ’10 (Vol. 01, pp. 533–536). IEEE Computer Society, Washington, DC.Google Scholar
  5. 5.
    Bisnik, N., & Abouzeid, A. (2005). Modeling and analysis of random walk search algorithms in p2p networks. Proceedings of the Second International Workshop on Hot Topics in Peer-to-Peer Systems (pp. 95–103). IEEE Computer Society.Google Scholar
  6. 6.
    Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.U. (2006) Complex networks: Structure and dynamics. Physics Reports 424(4–5): 175–308CrossRefMathSciNetGoogle Scholar
  7. 7.
    Brazier, F. M. T., Kephart, J. O., Parunak, H. V. D., & Huhns, M. N. (2009). Agents and service-oriented computing for autonomic computing: A research agenda. IEEE Internet Computing 13(3), 82–87.Google Scholar
  8. 8.
    Cao, J., Yao, Y., Zheng, X., & Liu, B. (2010). Semantic-based self-organizing mechanism for service registry and discovery. In: 14th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 345–350).Google Scholar
  9. 9.
    Centola, D., Gonzalez-Avella, J.C., Eguiluz, V.M., & San Miguel, M. (2007). Homophily, cultural drift, and the co-evolution of cultural groups. Journal of Conflict Resolution, 51, 905–929.Google Scholar
  10. 10.
    Clip2 (2001). The gnutella protocol specification v0.4.
  11. 11.
    Crespo, A., & Garcia-Molina, H. (2002). Routing indices for peer-to-peer systems. In: ICDCS ’02: Proceedings of the 22nd International Conference on Distributed Computing Systems (ICDCS’02) (p. 23). IEEE Computer Society.Google Scholar
  12. 12.
    Currarini, S., & Vega-Redondo, F. (2010). Search and homophily in social networks. World 24, 1–32.Google Scholar
  13. 13.
    Donetti, L., & Munoz, M. A. (2004). Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, 10, P10012.Google Scholar
  14. 14.
    Dorogovtsev, S., Mendes, J. (2003). Evolution of networks. Oxford: Oxford University Press.Google Scholar
  15. 15.
    Ferber, J., Gutknecht, O., & Michel, F. (2003). From agents to organizations: An organizational view of multi-agent systems. In P. Giorgini, J. P. Müller & J. Odell (Eds.), Agent-oriented software engineering IV, Lecture notes in computer science, (Vol. 2935, Chap. 15, pp. 443–459). Berlin: Springer.Google Scholar
  16. 16.
    Fu, P., Liu, S., Yang, H., Gu, L. (2009). Matching algorithm of web services based on semantic distance. In: WISA.Google Scholar
  17. 17.
    Gkantsidis C., Mihail M., Saberi A. (2006) Random walks in peer-to-peer networks: Algorithms and evaluation. Performance Evaluation 63(3): 241–263CrossRefGoogle Scholar
  18. 18.
    Gummadi P. K., Saroiu S., Gribble S. D. (2002) A measurement study of napster and gnutella as examples of peer-to-peer file sharing systems. SIGCOMM Computer Communication Review 32: 82–82CrossRefGoogle Scholar
  19. 19.
    Huhns, M.N. (2002). Agents as web services. IEEE Internet Computing (pp. 93–95).Google Scholar
  20. 20.
    Huhns, M. N., Singh, M. P., Burstein, M., Decker, K., Durfee, E., Finin, T., Gasser, L., Goradia, H., Jennings, N., Lakkaraju, K., Nakashima, H., Parunak, V., Rosenschein, J. S., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K., Tambe, M., Wagner, T., & Zavala, L. (2005). Research directions for service-oriented multiagent systems. IEEE Internet Computing 9, 65–70 Scholar
  21. 21.
    Kalogeraki, V., Gunopulos, D., & Zeinalipour-Yazti, D. (2002). A local search mechanism for peer-to-peer networks. In: CIKM ’02: Proceedings of the eleventh international conference on Information and knowledge management (pp. 300–307). New York: ACM.Google Scholar
  22. 22.
    Kleinberg, J. (2006). Complex networks and decentralized search algorithms. In: In Proceedings of the International Congress of Mathematicians (ICM).Google Scholar
  23. 23.
    Kleinberg J. M. (2000) Navigation in a small world. Nature 406: 845CrossRefGoogle Scholar
  24. 24.
    Klusch, M., Fries, B., & Sycara, K. (2006). Automated semantic web service discovery with owls-mx. In: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, AAMAS ’06 (pp. 915–922). New York: ACM.Google Scholar
  25. 25.
    Klusch, M., Fries, B., & Sycara, K. (2009). Owls-mx: A hybrid semantic web service matchmaker for owl-s services. Web Semantics Science Services and Agents on the World Wide Web 7(2), 121–133 Scholar
  26. 26.
    Latapy M. (2008) Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical Computer Science 407: 458–473CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Lazarsfeld, P. (1954). Friendship as a social process: A substantive and methodological analysis. In M. T. Berger, T. Abel & C. H. Page (Eds.) Freedom and control in modern society (pp. 326). New York: Van Nostrand and Company.Google Scholar
  28. 28.
    Lopes A. L., Botelho L. M. (2008) Improving multi-agent based resource coordination in peer-to-peer networks. Journal of Networks 3: 38–47CrossRefGoogle Scholar
  29. 29.
    Lv, Q., Cao, P., Cohen, E., Li, K., & Shenker, S. (2002). Search and replication in unstructured peer-to-peer networks. In: Proceedings of the 16th international conference on Supercomputing, ICS ’02 (pp. 84–95). New York: ACM.Google Scholar
  30. 30.
    Maymounkov, P., & Mazieres, D. (2002). Kademlia: A peer-to-peer information system based on the xor metric. In: Proceedings of the 1st International Workshop on Peer-to Peer Systems (IPTPS02).Google Scholar
  31. 31.
    McPherson, M., Smith-Lovin, L., Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.Google Scholar
  32. 32.
    Michlmayr, E. (2006). Ant algorithms for search in unstructured peer-to-peer networks. In: 22nd International Conference on Data Engineering (ICDE).Google Scholar
  33. 33.
    Newman, M. E. J. (2002). Assortative mixing in networks. Physical Review Letters 89, 208,701.Google Scholar
  34. 34.
    Ogston, E., & Vassiliadis, S. (2001). Matchmaking among minimal agents without a facilitator. In: Proceedings of the 5th International Conference on Autonomous Agents (pp. 608–615).Google Scholar
  35. 35.
    Ouksel, A., Babad, Y., & Tesch, T. (2004). Matchmaking software agents in b2b markets. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS’04).Google Scholar
  36. 36.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K. (2002). Semantic matching of web services capabilities. First International Semantic Web Conference (ISWC2002).Google Scholar
  37. 37.
    Papazoglou M. P., Traverso P., Dustdar S., Leymann F. (2007) Service-oriented computing: State of the art and research challenges. Computer 40: 38–45CrossRefGoogle Scholar
  38. 38.
    Perryea, C., & Chung, S. (2006). Community-based service discovery. In: International Conference on Web Services (pp. 903 –906).Google Scholar
  39. 39.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A scalable content-addressable network. In:SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications. New York: ACM.Google Scholar
  40. 40.
    Rowstron, A. I. T., & Druschel, P. (2001). Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, Middleware ’01 (pp. 329–350). Springer.Google Scholar
  41. 41.
    Simsek, Ö., & Jensen, D. (2005). Decentralized search in networks using homophily and degree disparity. In: IJCAI (pp. 304–310).Google Scholar
  42. 42.
    Sivashanmugam K., Verma K., Sheth A. (2004) Discovery of web services in a federated registry environment. IEEE International Conference on Web Services 1: 270Google Scholar
  43. 43.
    Stoica I., Morris R., Karger D., Kaashoek F., Balakrishnan H. (2001) Chord: A scalable peer-to-peer lookup service for internet applications. Computer Communication Review 31(4): 149–160CrossRefGoogle Scholar
  44. 44.
    Tsoumakos, D., & Roussopoulos, N. (2003). Adaptive probabilistic search for peer-to-peer networks. In: Peer-to-peer computing (pp. 102–109).Google Scholar
  45. 45.
    UDDI (2002). Evolution of uddi, white paper available.
  46. 46.
    Upadrashta, Y., Vassileva, J., & Grassmann, W. (2005). Social networks in peer-to-peer systems. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences.Google Scholar
  47. 47.
    Val, E. D., Rebollo, M., & Botti, V. (2011). Introducing homophily to improve semantic service search in a self-adaptive system. In: 10th International Conference on Autonomous Agents and Multiagent Systems.Google Scholar
  48. 48.
    Watts D., Dodds P., Newman M. (2002) Identity and search in social networks. Science 296(5571): 1302–1305CrossRefGoogle Scholar
  49. 49.
    Watts D. J., Strogatz S. H. (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442CrossRefGoogle Scholar
  50. 50.
    Xiao, S., & Xiao, G. (2006). On degree-based decentralized search in complex networks. CoRRGoogle Scholar
  51. 51.
    Yang, B., & Garcia-Molina, H. (2002). Efficient search in peer-to-peer networks. In: Proceedings of the International Conference on Distributed Computing Systems (ICDCS).Google Scholar
  52. 52.
    Zhang, H., Croft, W. B., Levine, B., & Lesser, V. (2004). A multi-agent approach for peer-to-peer based information retrieval system. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, Vol. 1, AAMAS ’04 (pp. 456–463). Washington, DC: IEEE Computer Society.Google Scholar
  53. 53.
    Zhong, M. (2006). Popularity-biased random walks for peer-to-peer search under the square-root principle. In: Proceedings of the 5th International Workshop on Peer-to-Peer Systems (IPTPS).Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Universitat Politècnica de ValènciaValènciaSpain

Personalised recommendations