Advertisement

Autonomous Agents and Multi-Agent Systems

, Volume 26, Issue 1, pp 1–36 | Cite as

Hierarchical visibility for guaranteed search in large-scale outdoor terrain

  • A. Kleiner
  • A. Kolling
  • M. Lewis
  • K. Sycara
Article

Abstract

Searching for moving targets in large environments is a challenging task that is relevant in several problem domains, such as capturing an invader in a camp, guarding security facilities, and searching for victims in large-scale search and rescue scenarios. The guaranteed search problem is to coordinate the search of a team of agents to guarantee the discovery of all targets. In this paper we present a self-contained solution to this problem in 2.5D real-world domains represented by digital elevation models (DEMs). We introduce hierarchical sampling on DEMs for selecting heuristically the close to minimal set of locations from which the entire surface of the DEM can be guarded. Locations are utilized to form a search graph on which search strategies for mobile agents are computed. For these strategies schedules are derived which include agent paths that are directly executable in the terrain. Presented experimental results demonstrate the performance of the method. The practical feasibility of our approach has been validated during a field experiment at the Gascola robot training site where teams of humans equipped with iPads successfully searched for adversarial and omniscient evaders. The field demonstration is the largest-scale implementation of a guaranteed search algorithm to date.

Keywords

Guaranteed search Pursuit-evasion Exploration Task allocation Path planning Moving target search Human–robot-interaction HRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrière, L., Flocchini, P., Fraigniaud, P., & Santoro, N. (2002). Capture of an intruder by mobile agents. In: Proceedings of the fourteenth annual ACM symposium on parallel algorithms and architectures (pp. 200–209). New York, NY, USA: ACM Press.Google Scholar
  2. 2.
    Bhattacharya S., Hutchinson S. (2010) On the existence of nash equilibrium for a visibility based pursuit evasion game. International Journal of Robotics Research, 29(7): 831–839CrossRefGoogle Scholar
  3. 3.
    Bienstock D., Seymour P. (1991) Monotonicity in graph searching. Journal of Algorithms 12(2): 239–245MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Borie, R., Tovey, C., & Koenig, S. (2009). Algorithms and complexity results for pursuit-evasion problems. In: Proceedings of the international joint conference on artificial intelligence (pp. 59–66).Google Scholar
  5. 5.
    Bresenham J. E. (1965) Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1): 25–30CrossRefGoogle Scholar
  6. 6.
    Bullo, F., Cortés, J., & Martínez, S. (2009). Distributed control of robotic networks. Applied mathematics series. Princeton University Press. Available at http://coordinationbook.info.
  7. 7.
    Burkard, R. E., & Cela E. (1998). Linear assignment problems and extensions. Technical report. Karl-Franzens Universitaet Graz & Graz University of Technology.Google Scholar
  8. 8.
    Carraresi P., Gallo G. (1984) A multi-level bottleneck assignment approach to the bus drivers’ rostering problem. European Journal of Operational Research 16(2): 163–173MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Choset H. (2001) Coverage for robotics—a survey of recent results. Annals of Mathematics and Artificial Intelligence 31(1–4): 113–126CrossRefGoogle Scholar
  10. 10.
    Dereniowski, D. (2010). Connected searching of weighted trees. Mathematical Foundations of Computer Science, pp. 330–341.Google Scholar
  11. 11.
    Deutscher, J., Davison, A., & Reid, I. (2001). Automatic partitioning of high dimensional search spaces associated with articulated body motion capture. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001 (Vol. 2, pp. II-669–II-676). doi: 10.1109/CVPR.2001.991028. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=991028&isnumber=21365.
  12. 12.
    Dornhege, C., & Kleiner, A. (2007). Behavior maps for online planning of obstacle negotiation and climbing on rough terrain. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS) (pp. 3005–3011). San Diego, CA.Google Scholar
  13. 13.
    Elkan, C. (1993). The paradoxical success of fuzzy logic. In: Proceedings of the eleventh national conference on artificial intelligence (pp. 698–703). Menlo Park, CA.Google Scholar
  14. 14.
    Fan, M., Tang, M., & Dong, J. (2003). A review of real-time terrain rendering techniques. In: Proceedings of the 8th international conference on computer supported cooperative work in design, 2004 (Vol. 1, pp. 685–691). IEEE.Google Scholar
  15. 15.
    Fomin F. V., Thilikos D. M. (2008) An annotated bibliography on guaranteed graph searching. Theoretical Computer Science 399(3): 236–245MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gerkey B. P., Thrun S., Gordon G. (2005) Parallel stochastic hill-climbing with small teams. Multi-Robot Systems: From Swarms to Intelligent Automata 3: 65–77CrossRefGoogle Scholar
  17. 17.
    Guibas L. J., Latombe J.-C., LaValle S. M., Lin D., Motwani R. (1999) A visibility-based pursuit-evasion problem. International Journal of Computational Geometry and Applications 9: 471–494MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hollinger G., Kehagias A., Singh S. (2010) GSST: Anytime guaranteed search. Autonomous Robots 29(1): 99–118CrossRefGoogle Scholar
  19. 19.
    Ishida, T., & Korf, R. E. (1991). Moving target search. In: Proceedings of the international joint conference on artificial intelligence (pp. 204–210). Citeseer.Google Scholar
  20. 20.
    Jonker R., Volgenant A. (1987) A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4): 325–340MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Karp R.M. (1972) Reducibility among combinatorial problems. In: Miller R., Thatcher J. (eds) Complexity of computer computations. Plenum Press, New YorkGoogle Scholar
  22. 22.
    Kehagias, A., Hollinger, G., & Gelastopoulos, A. (2009). Searching the nodes of a graph: Theory and algorithms. Technical report. ArXiv Repository 0905.3359 [cs.DM]. Carnegie Mellon University.Google Scholar
  23. 23.
    Kleiner A., Dornhege C. (2007) Real-time localization and elevation mapping within urban search and rescue scenarios. Journal of Field Robotics 24(8–9): 723–745CrossRefGoogle Scholar
  24. 24.
    Koenderink J. J., Doorn A. J. (1979) The internal representation of solid shape with respect to vision. Biological cybernetics 32(4): 211–216zbMATHCrossRefGoogle Scholar
  25. 25.
    Koenig, S., Likhachev, M., & Sun, X. (2007). Speeding up moving-target search. In: Proceedings of the 6th international joint conference on autonomous agents and multiagent systems (pp. 1–8). ACM.Google Scholar
  26. 26.
    Kolling, A., & Carpin, S. (2008). Extracting surveillance graphs from robot maps. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2323–2328).Google Scholar
  27. 27.
    Kolling, A., & Carpin, S. (2008). Multi-robot surveillance: An improved algorithm for the Graph-Clear problem. In: Proceedings of the IEEE international conference on robotics and automation (pp. 2360–2365).Google Scholar
  28. 28.
    Kolling, A., & Carpin, S. (2009). On weighted edge-searching. Technical report 01. Merced: School of Engineering, University of California.Google Scholar
  29. 29.
    Kolling A., Carpin S. (2010) Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics 26(1): 32–47CrossRefGoogle Scholar
  30. 30.
    LaPaugh A. S. (1993) Recontamination does not help to search a graph. Journal of the ACM 40(2): 224–245MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lazebnik, S. (2001). Visibility-based pursuit-evasion in three-dimensional environments. Technical report. University of Illinois at Urbana-Champaign.Google Scholar
  32. 32.
    Lewis, M., Kolling, A., Kleiner, A., & Sycara, K. (2010). Pursuit-evasion in 2.5d based on team- visibility. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4610–4616).Google Scholar
  33. 33.
    Megiddo N., Hakimi S. L., Garey M. R., Johnson D. S., Papadimitriou C. H. (1988) The complexity of searching a graph. Journal of the ACM 35(1): 18–44MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Metea, M., & Tsai, J. (1987, March). Route planning for intelligent autonomous land vehicles using hierarchical terrain representation. In: Proceedings of 1987 IEEE international conference on robotics and automation (Vol. 4, pp. 1947–1952).Google Scholar
  35. 35.
    Moldenhauer, C., & Sturtevant, N. R. (2009). Evaluating strategies for running from the cops. In: Proceedings of the 21st international joint conference on artificial intelligence (pp. 584–589). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.Google Scholar
  36. 36.
    Moors, M., Röhling, T., & Schulz, D. (2005). A probabilistic approach to coordinated multi-robot indoor surveillance. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3447–3452).Google Scholar
  37. 37.
    Parsons T. D. (1976) Pursuit-evasion in a graph. In: Alavi Y., Lick D. R. (eds) Theory and applications of graphs. Springer, Berlin/Heidelberg, pp 426–441CrossRefGoogle Scholar
  38. 38.
    Sachs S., Rajko S., LaValle S. M. (2004) Visibility-based pursuit-evasion in an unknown planar environment. The International Journal of Robotics Research 23(1): 3–26CrossRefGoogle Scholar
  39. 39.
    Samet H. (1990) The design and analysis of spatial data structures. Addison-Wesley Pub (Sd), ReadingGoogle Scholar
  40. 40.
    Shermer T. (1992) Recent results in art galleries. Proceedings of the IEEE 80(9): 1384–1399CrossRefGoogle Scholar
  41. 41.
    Simov B., Slutzki G., LaValle S. M. (2009) Clearing a polygon with two 1-searchers. International Journal of Computational Geometry and Applications 19(1): 59–92MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Steder, B. (2010). Freiburg campus LiDAR data. http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/.
  43. 43.
    Sturtevant, N., & Buro, M. (2005). Partial pathfinding using map abstraction and refinement. In: Proceedings of the 20th national conference on artificial intelligence (Vol. 3, pp. 1392–1397). AAAI Press.Google Scholar
  44. 44.
    Suzuki I., Yamashita M. (1992) Searching for a mobile intruder in a polygonal region. SIAM Journal on Computing 21(5): 863–888MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Tovar, B., & LaValle, S. M. (2006). Visibility-based pursuit-evasion with bounded speed. In: Proceedings of the workshop on algorithmic foundations of robotics (pp. 475–489).Google Scholar
  46. 46.
    Tutte W. T. (2001) Graph theory. Cambridge University Press, CambridgezbMATHGoogle Scholar
  47. 47.
    U.S. Geological Survey (USGS). (2010). U.S. Geological Survey (USGS). http://www.usgs.gov/.
  48. 48.
    World Bank ImageCat Inc. (2010). RIT Haiti earthquake LiDAR. http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=datasets.
  49. 49.
    Yang, B., Dyer, D., & Alspach B. (2004). Sweeping graphs with large clique number. Lecture notes in computer science (pp. 908–920).Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of FreiburgFreiburgGermany
  2. 2.School of Information SciencesUniversity of PittsburghPittsburghUSA
  3. 3.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations