Multiagent task allocation in social networks

  • Mathijs M. de WeerdtEmail author
  • Yingqian Zhang
  • Tomas Klos
Open Access


This paper proposes a new variant of the task allocation problem, where the agents are connected in a social network and tasks arrive at the agents distributed over the network. We show that the complexity of this problem remains NP-complete. Moreover, it is not approximable within some factor. In contrast to this, we develop an efficient greedy algorithm for this problem. Our algorithm is completely distributed, and it assumes that agents have only local knowledge about tasks and resources. We conduct a broad set of experiments to evaluate the performance and scalability of the proposed algorithm in terms of solution quality and computation time. Three different types of networks, namely small-world, random and scale-free networks, are used to represent various social relationships among agents in realistic applications. The results demonstrate that our algorithm works well and also that it scales well to large-scale applications. In addition we consider the same problem in a setting where the agents holding the resources are self-interested. For this, we show how the optimal algorithm can be used to incentivize these agents to be truthful. However, the efficient greedy algorithm cannot be used in a truthful mechanism, therefore an alternative, cluster-based algorithm is proposed and evaluated.


Task allocation Social networks Resource allocation Distributed algorithm Mechanism design 



This work is supported by the Technology Foundation STW, applied science division of NWO, and the Ministry of Economic Affairs.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Abdallah, S., & Lesser, V. (2005). Modeling task allocation using a decision theoretic model. In Proceedings of the 4th international conference on autonomous agents and multiagent systems (AAMAS 2005) (pp. 719–726). New York: ACM.Google Scholar
  2. 2.
    Alon N., Feige U., Wigderson A., Zuckerman D. (1995) Derandomized Graph Products. Computational Complexity 5(1): 60–75MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Andersson, M. R., & Sandholm, T. W. (1998). Contract types for satisficing task allocation: II experimental results. In AAAI spring symposium series: Satisficing models. California: Stanford UniversityGoogle Scholar
  4. 4.
    van Assen M. A. L. M., de Rijt A. (2007) Dynamic exchange networks. Social Networks 29(2): 266–278CrossRefGoogle Scholar
  5. 5.
    Babanov, A., & Gini, M. (2006). Deciding task schedules for temporal planning via auctions. In AAAI Spring Symposium.Google Scholar
  6. 6.
    Barabási A. L., Albert R. (1999) Emergence of scaling in random networks. Science 286(5439): 509–512MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barton, L., & Allan, V. H. (2007). Methods for coalition formation in adaptation-based social networks. In Cooperative information agents XI, LNAI (vol. 4676, pp. 285–297). Heidelberg: Springer.Google Scholar
  8. 8.
    Braun N., Gautschi T. (2006) A nash bargaining model for simple exchange networks. Social Networks 28(1): 1–23CrossRefGoogle Scholar
  9. 9.
    Chakraborty, T., Kearns, M., & Khanna, S. (2009). Network bargaining: Algorithms and structural results. In Proceedings of the tenth ACM conference on electronic commerce (pp. 159–168).Google Scholar
  10. 10.
    Chevaleyre Y., Dunne P. E., Endriss U., Lang J., Lemaitre M., Maudet N., Padget J., Phelps S., Rodríguez-Aguilar J. A., Sousa P. (2006) Issues in multi-agent resource allocation. Informatica 30: 3–31zbMATHGoogle Scholar
  11. 11.
    Chevaleyre, Y., Endriss, U., & Maudet, N. (2007). Allocating goods on a graph to eliminate envy. In Proceedings of the 22nd national conference on artificial intelligence (AAAI 2007) (pp. 700–705).Google Scholar
  12. 12.
    Coase R. H. (1937) The nature of the firm. Economica NS 4(16): 386–405CrossRefGoogle Scholar
  13. 13.
    Coase R. H. (1995) My evolution as an economist. In: Breit W., Spencer R. W. (eds) Lives of the laureates. MIT Press, Cambridge, MA, pp 227–249Google Scholar
  14. 14.
    Dantzig G. (1957) Discrete variable problems. Operations Research 5: 266–277MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dias M. B., Zlot R. M., Kalra N., Stentz A. T. (2005) Market-based multirobot coordination: A survey and analysis. Technical report CMU-RI-TR-05-13. Robotics Institute, Carnegie Mellon University, Pittsburgh, PAGoogle Scholar
  16. 16.
    Dunne P. E., Kraus S., Manisterski E., Wooldridge M. (2010) Solving coalitional resource games. Artificial Intelligence 174(1): 20–50MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Easwaran A. M., Pitt J. (2002) Supply chain formation in open, market-based multi-agent systems. International Journal of Computational Intelligence and Applications 2(3): 349–363CrossRefGoogle Scholar
  18. 18.
    Eberling, M., & Kleine Büning, H. (2010). Self-adaptation strategies to favor cooperation. In Agent and multi-agent systems: Technologies and Applications, LNAI (vol. 6070, pp. 223–232). New York: Springer.Google Scholar
  19. 19.
    Ferreira P., dos Santos F., Bazzan A., Epstein D., Waskow S. (2010) Robocup rescue as multiagent task allocation among teams: Experiments with task interdependencies. Autonomous Agents and Multi-Agent Systems 20: 421–443CrossRefGoogle Scholar
  20. 20.
    Foster, I., Jennings, N. R., & Kesselman, C. (2004). Brain meets Brawn: why grid and agents need each other. In Proceedings of the 3rd international conference on autonomous agents and multiagent systems (AAMAS 2004) (pp. 8–15). Washington, DC: IEEE Computer Society.Google Scholar
  21. 21.
    Garey M. R., Johnson D. S. (1979) Computers and intractability—a guide to the theory of NP-completeness. W.H. Freeman and company, New YorkzbMATHGoogle Scholar
  22. 22.
    Gaston, M. E., & DesJardins, M. (2005). Agent-organized networks for dynamic team formation. In Proceedings of the 4th interence confere on autonomous agents and multiagent systems (AAMAS 2005) (pp. 230–237). New York: ACM Press.Google Scholar
  23. 23.
    Gaston M. E., DesJardins M. (2008) The effect of network structure on dynamic team formation in multi-agent systems. Computational Intelligence 24(2): 122–157MathSciNetCrossRefGoogle Scholar
  24. 24.
    Girvan M., Newman M. E. J. (2002) Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12): 7821–7826MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., & Stentz, A. T. (2003). Market-based multi-robot planning in a distributed layered architecture. In Multi-robot systems: From swarms to intelligent automata: Proceedings from the 2003 international workshop on multi-robot systems (Vol. 2, pp. 27–38). Dordrecht: Kluwer Academic Publishers.Google Scholar
  26. 26.
    Groves T. (1973) Incentives in teams. Econometrica 41(4): 617–631MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Gulati R. (1995) Does familiarity breed trust? The implications of repeated ties for contractual choice in alliances. Academy of Management Journal 38(1): 85–112MathSciNetCrossRefGoogle Scholar
  28. 28.
    Heydenreich B., Muller R., Uetz M. (2007) Games and mechanism design in machine scheduling—an introduction. Production and Operations Management 16(4): 437–454CrossRefGoogle Scholar
  29. 29.
    Hirayama K., Yokoo M., Sycara K. (2004) An easy-hard-easy cost profile in distributed constraint satisfaction. Transactions of the Information Processing Society of Japan 45(9): 2217–2225MathSciNetGoogle Scholar
  30. 30.
    Kafalı, Ö., & Yolum, P. (2008). Improving self-organized resource allocation with effective communication. In Seventh international workshop on agents and peer-to-peer computing, AAMAS (pp. 7–18).Google Scholar
  31. 31.
    Kleinberg, J., & Tardos, E. (2008). Balanced outcomes in social exchange networks. In Proceedings of the 40th annual ACM symposium on theory of computing (pp. 295–304).Google Scholar
  32. 32.
    Klos T., Nooteboom B. (2001) Agent-based computational transaction cost economics. Economic Dynamics and Control 25(3–4): 503–526zbMATHCrossRefGoogle Scholar
  33. 33.
    Koutsoupias E. (2003) Selfish task allocation. Bulletin of EATCS 81: 79–88MathSciNetzbMATHGoogle Scholar
  34. 34.
    Kraus, S., Shehory, O., & Taase, G. (2003). Coalition formation with uncertain heterogeneous information. In Proceedings of the 2nd international conference on autonomous agents and multiagent systems (AAMAS 2003) (pp. 1–8). New York: ACM.Google Scholar
  35. 35.
    Kraus, S., Shehory, O., & Taase, G. (2004). The advantages of compromising in coalition formation with incomplete information. In Proceedings of the 3rd international conference on autonomous agents and multiagent systems (AAMAS 2004) (pp. 588–595).Google Scholar
  36. 36.
    van der Krogt, R., de Weerdt, M., & Zhang, Y. (2008). Of mechanism design and multiagent planning. In ECAI (pp. 423–427). Amsterdam: IOS Press.Google Scholar
  37. 37.
    Lerman, K., & Shehory, O. (2000). Coalition formation for large-scale electronic markets. In Proceedings of 4th international conference on multi-agent systems (ICMAS 2000) (pp. 167–174). Boston, MA: IEEE Computer Society.Google Scholar
  38. 38.
    Makhorin, A. (2004). GLPK. GNU linear programming kit
  39. 39.
    Manisterski, E., David, E., Kraus, S., & Jennings, N. (2006). Forming efficient agent groups for completing complex tasks. In H. Nakashima, M. P. Wellman, G. Weiss& P. Stone (Eds.),Proceedings of the 5th international conference on autonomous agents and multiagent systems (AAMAS 2006) (pp. 257–264). Hakodate: ACM.Google Scholar
  40. 40.
    Mitchell, D. G., Selman, B., & Levesque, H. J. (1992). Hard and easy distributions of SAT problems. In Proceedings of the national conference on artificial intelligence (AAAI 1992) (pp. 459–465).Google Scholar
  41. 41.
    Myerson R. (1979) Incentive-compatibility and the bargaining problem. Econometrica 47: 61–73MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Myerson R. B., Satterthwaite M. A. (1983) Efficient mechanisms for bilateral trading. Journal of Economic Theory 29(2): 265–281MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Nair, R., Ito, T., Tambe & Marsella, S. (2002). Task allocation in the robocup rescue simulation domain: A short note. In A. Birk, S. Coradeschi & S. Tadokoro (Eds.), RoboCup 2001: Robot Soccer world cup V, lecture notes in computer science (Vol.2377 , pp. 1–22). Springer Berlin, Heidelberg.Google Scholar
  44. 44.
    Niedermeier R. (2006) Invitation to fixed-parameter algorithms, Oxford lecture series in mathematics. Oxford University Press, OxfordCrossRefGoogle Scholar
  45. 45.
    Nisan N. (2007) Introduction to mechanism design (for computer scientists). In: Nisan N., Roughgarden T., Tardos E., Vazirani V. (eds) Algorithmic game theory. Cambridge University Press, Cambridge, pp 209–242CrossRefGoogle Scholar
  46. 46.
    Nisan, N., & Ronen, A. (2000). Computationally feasible VCG mechanisms. In Proceedings of the 2nd ACM conference on electronic commerce (pp. 242–252). New York: ACM.Google Scholar
  47. 47.
    Nisan N., Ronen A. (2001) Algorithmic mechanism design. Games and Economic Behavior 35(1–2): 166–196MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Patel J., Teacy W. L., Jennings N. R., Luck M., Chalmers S., Oren N., Norman T. J., Preece A., Gray P. M., Shercliff G., Stockreisser P. J., Shao J., Gray W. A., Fiddian N. J., Thompson S. (2005) Agent-based virtual organizations for the grid. Multi-Agent and Grid Systems 1(4): 237–249zbMATHGoogle Scholar
  49. 49.
    Rothkopf M. H., Pekec˘ A., Harstad R. M. (1998) Computationally manageable combinational auctions. Management Science 44: 1131–1147zbMATHCrossRefGoogle Scholar
  50. 50.
    Sander, P. V., Peleshchuk, D., & Grosz, B. J. (2002). A scalable, distributed algorithm for efficient task allocation. In Proceedings of the 1st international conference on autonomous agents and multiagent systems (AAMAS 2002) (pp. 1191–1198). New York: ACM Press.Google Scholar
  51. 51.
    Shehory, O. (2000). A scalable agent location mechanism. In N. R. Jennings & Y. Lespérance (Eds.), Proceedings of intelligent agents VI, agent theories, architectures, and languages (ATAL), LNCS (Vol. 1757, pp. 162–172). Heidelberg: SpringerGoogle Scholar
  52. 52.
    Shehory O., Kraus S. (1998) Methods for task allocation via agent coalition formation. Artificial Intelligence 101(1–2): 165–200MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Shehory O., Kraus S. (1999) Feasible formation of coalitions among autonomous agents in nonsuperadditive environments. Computational Intelligence 15(3): 218–251MathSciNetCrossRefGoogle Scholar
  54. 54.
    Shoham Y., Leyton-Brown K. (2008) Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press, CambridgeGoogle Scholar
  55. 55.
    Smith R. G. (1981) The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers C-29(12): 1104–1113CrossRefGoogle Scholar
  56. 56.
    Sreenath R. M., Singh M. P. (2004) Agent-based service selection. Web Semantics 1(3): 261–279CrossRefGoogle Scholar
  57. 57.
    Vazirani V. V. (2001) Approximation algorithms. Springer-Verlag New York Inc, New YorkGoogle Scholar
  58. 58.
    Vidal J. M. (2003) A method for solving distributed service allocation problems. Web Intelligence and Agent Systems 1(2): 139–146Google Scholar
  59. 59.
    Walsh, W. E., & Wellman, M. P. (1999). Efficiency and equilibrium in task allocation economies with hierarchical dependencies. In International joint conference on artificial intelligence (IJCAI) (pp. 520–526)Google Scholar
  60. 60.
    Walsh, W. E., & Wellman, M. P. (2000). Modeling supply chain formation in multiagent systems. In Agent-mediated electronic commerce II, LNAI (Vol. 1788, pp. 94–101). Heidelberg: Springer.Google Scholar
  61. 61.
    Watts D. J., Strogatz S. H. (1998) Collective dynamics of “small world” networks. Nature 393: 440–442CrossRefGoogle Scholar
  62. 62.
    de Weerdt, M., Zhang, Y., & Klos, T. B. (2007). Distributed task allocation in social networks. In Proceedings of the 6th international conference on autonomous agents and multiagent systems (AAMAS 2007) (pp. 17–24). New York: ACM.Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Mathijs M. de Weerdt
    • 1
    Email author
  • Yingqian Zhang
    • 2
  • Tomas Klos
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Department of EconometricsErasmus School of EconomicsRotterdamThe Netherlands

Personalised recommendations