Autonomous Agents and Multi-Agent Systems

, Volume 22, Issue 2, pp 317–355 | Cite as

Multi-agent role allocation: issues, approaches, and multiple perspectives

Article

Abstract

In cooperative multi-agent systems, roles are used as a design concept when creating large systems, they are known to facilitate specialization of agents, and they can help to reduce interference in multi-robot domains. The types of tasks that the agents are asked to solve and the communicative capabilities of the agents significantly affect the way roles are used in cooperative multi-agent systems. Along with a discussion of these issues about roles in multi-agent systems, this article compares computational models of the role allocation problem, presents the notion of explicitly versus implicitly defined roles, gives a survey of the methods used to approach role allocation problems, and concludes with a list of open research questions related to roles in multi-agent systems.

Keywords

Multi-agent systems Role allocation Task allocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, M. (2005). Three myths about roles. In Workshop on roles and coordination, AAAI Fall Symposium.Google Scholar
  2. 2.
    Abramson, M., Chao, W., & Mittu, R. (2005). Design and evaluation of distributed role allocation algorithms in open environments. In Proceedings of the International Conference on Artificial intelligence (pp. 565–571).Google Scholar
  3. 3.
    Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In Proceedings of the first international joint conference on autonomous agents and multiagent systems (pp. 1090–1097).Google Scholar
  4. 4.
    Agüero, C. E., Vicente, M., Can̂as, J. M., Gómez, V. M., & Carlos, J. (2006). SWITCH! dynamic roles exchange among cooperative robots. In Proceedings of the second international workshop on multi-agent robotic systems, part of the third international conference on informatics in control, automation and robotics (pp. 99–105).Google Scholar
  5. 5.
    Anderson, C., & Bartholdi, J. J. III (2000). Centralized versus decentralized control in manufacturing: Lessons from social insects. In I. P. McCarthy & T. Rakotobe-Joel (Eds.),Proceedings of University of Warwick, complexity and complex systems in industry (pp. 92–108).Google Scholar
  6. 6.
    Anderson C., Franks N. R. (2001) Teams in animal societies. Behavioral Ecology 12(5): 534–540CrossRefGoogle Scholar
  7. 7.
    Anderson C., Franks N. R. (2004) Teamwork in ants, robots and humans. Advances in the Study of Behavior 33: 1–48MATHCrossRefGoogle Scholar
  8. 8.
    Anderson C., Franks N. R., McShea D. W. (2001) The complexity and hierarchical structure of tasks in insect societies. Animal Behaviour 62(4): 643–651CrossRefGoogle Scholar
  9. 9.
    Balch, T. (1997). Learning roles: Behavioral diversity in robot teams. In Proceedings of the 1997 AAAI workshop on multiagent learning.Google Scholar
  10. 10.
    Baldassarre G., Nolfi S., Parisi D. (2003) Evolving mobile robots able to display collective behaviors. Artificial Life 9(3): 255–267CrossRefGoogle Scholar
  11. 11.
    Baldoni, M., Boella, G., Dorni, M., Mugnaini, A., & Grenna, R. (2008). powerJADE: Organizations and roles as primitives in the JADE framework. In Proceedings of the workshop on objects and agents (pp. 84–92).Google Scholar
  12. 12.
    Baumer, E., & Tomlinson, B. (2005). Institutionalization through reciprocal habitualization and typification. In Proceedings of the second NASA/JPL workshop on radical agent concepts (pp. 122–134).Google Scholar
  13. 13.
    Bertsekas D. P. (1992) Auction algorithms for network flow problems: A tutorial introduction. Computational Optimization and Applications 1: 7–66MATHMathSciNetGoogle Scholar
  14. 14.
    Beshers S. N., Fewell J. H. (2001) Models of division of labor in social insects. Annual Review of Entomology 46: 413–440CrossRefGoogle Scholar
  15. 15.
    Blumenthal, H. J., & Parker, G. B. (2004). Co-evolving team capture strategies for dissimilar robots. In Proceedings of the AAAI symposium on artificial multiagent learning.Google Scholar
  16. 16.
    Boella G., van der Torre L. (2007) The ontological properties of social roles in multi-agent systems: Definitional dependence, powers and roles playing roles. Artificial Intelligence and Law 15(3): 201–221CrossRefGoogle Scholar
  17. 17.
    Bonabeau E., Dorigo M., Théraulaz G. (1999) Swarm intelligence: From natural to artificial systems. Oxford University Press, Santa Fe Institute Studies in the Sciences of Complexity, New York, NYMATHGoogle Scholar
  18. 18.
    Bonabeau E., Théraulaz G. (1999) Role and variability of response thresholds in the regulation of division of labor in insect societies. In: Detrain C., Deneubourg J. L., Pasteels J. M. (eds) Information processing in social insects. Birkhäuser, Basel, pp 141–163Google Scholar
  19. 19.
    Bonabeau E., Theraulaz G., Deneubourg J.-L. (1995) Phase diagram of a model of self-organizing hierarchies. Physica A 217(3): 373–392CrossRefGoogle Scholar
  20. 20.
    Bowling, M. H., Browning, B., Chang, A., & Veloso, M. M. (2003). Plays as team plans for coordination and adaptation. In Proceedings of the RoboCup’03 symposium (pp. 686–693).Google Scholar
  21. 21.
    Bratman M. E. (1987) Intention, plans, and practical reason. Harvard University Press, Cambridge, MAGoogle Scholar
  22. 22.
    Bratman M. E., Israel D. J., Pollack M. E. (1988) Plans and resource-bounded practical reasoning. Computational Intelligence 4(4): 349–355CrossRefGoogle Scholar
  23. 23.
    Brusey, J., Makies, M., Padgham, L., Woodvine, B., & Fantone, K. (2001). RMIT United. In P. Stone, T. R. Balch & G. K. Kraetzschmar (Eds.), RoboCup 2000: Robot Soccer World Cup IV. Lecture Notes in Computer Science (Vol. 2019, pp. 563–566).Google Scholar
  24. 24.
    Cabri, G., Ferrari, L., & Leonardi, L. (2004). Agent role-based collaboration and coordination: A survey about existing approaches. In Proceedings of the IEEE international conference on systems, man and cybernetics (Vol. 6, pp. 5473–5478).Google Scholar
  25. 25.
    Campbell, A., & Wu, A. S. (2009). On the significance of synchroneity in emergent systems. In Proceedings of the eighth international conference on autonomous agents and multiagent systems (pp. 449–456).Google Scholar
  26. 26.
    Campbell, A., Wu, A. S., Garfield, K., Shumaker, R., Luke, S., & De Jong K. A. (2006). Empirical study on the effects of synthetic social structures on teams of autonomous vehicles. In Proceedings of the IEEE international conference on networking, sensing, and control (pp. 440–445).Google Scholar
  27. 27.
    Campos M., Bonabeau E., Theraulaz G., Deneubourg J.-L. (2000) Dynamic scheduling and division of labor in social insects. Adaptive Behavior 8(2): 83–95CrossRefGoogle Scholar
  28. 28.
    Cao Y. Uny, Fukunaga A. S., Kahng A. (1997) Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4(1): 7–27CrossRefGoogle Scholar
  29. 29.
    Chaimowicz, L., Campos, M. F. M., & Vijay Kumar, R. (2002). Dynamic role assignment for cooperative robots. In Proceedings of the IEEE international conference on robotics and automation (pp. 293–298).Google Scholar
  30. 30.
    Challet D., Zhang Y.-C. (1997) Emergence of cooperation and organization in an evolutionary game. Physica A 246: 407–418CrossRefGoogle Scholar
  31. 31.
    Cicirello V. A., Smith S. F. (2004) Wasp-like agents for distributed factory coordination. Autonomous Agents and Multi-Agent Systems 8(3): 237–266CrossRefGoogle Scholar
  32. 32.
    Cohen P. R., Levesque H. J. (1990) Intention is choice with commitment. Artificial Intelligence 42(2–3): 213–261MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    D’Ambrosio, D. B., & Stanley, K. O. (2008). Generative encoding for multiagent learning. In Proceedings of the tenth annual conference on genetic and evolutionary computation (pp. 819–826).Google Scholar
  34. 34.
    Dantzig G. B. (1963) Linear programming and extensions. Princeton Press, Princeton, NJMATHGoogle Scholar
  35. 35.
    Darling N., Hamilton S., Toyokawa T., Matsuda S. (2002) Naturally occurring mentoring in Japan and the United States: Social roles and correlates. American Journal of Community Psychology 30(2): 245–270CrossRefGoogle Scholar
  36. 36.
    Davis R., Smith R. G. (1983) Negotiation as a metaphor for distributed problem solving. Artificial Intelligence 20(1): 63–109CrossRefGoogle Scholar
  37. 37.
    Decker, K., & Lesser, V. (1993). Quantitative modeling of complex computational task environments. In Proceedings of the eleventh national conference on artificial intelligence (pp. 217–224).Google Scholar
  38. 38.
    Detrain C., Pasteels J. M. (1992) Caste polyethism and collective defense in the ant, Pheidole pallidula: The outcome of quantitative differences in recruitment. Behavioral Ecology and Sociobiology 29(6): 405–412CrossRefGoogle Scholar
  39. 39.
    Dias, M. B. (2004). TraderBots: A new paradigm for robust and efficient multirobot coordination in dynamic environments. PhD thesis, Robotics Institute, Carnegie Mellon University, January 2004.Google Scholar
  40. 40.
    Dias M. B., Zlot R. M., Kalra N., Stentz A. (2006) Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7): 1257–1270CrossRefGoogle Scholar
  41. 41.
    dos Santos, F., & Bazzan, A. L. C. (2009). An ant based algorithm for task allocation in large-scale and dynamic multiagent scenarios. In Proceedings of the eleventh annual conference on genetic and evolutionary computation (pp. 73–80).Google Scholar
  42. 42.
    Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1993). A taxonomy for swarm robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 441–447).Google Scholar
  43. 43.
    Durfee, E. H. (1995). Blissful ignorance: Knowing just enough to coordinate well. In Proceedings of the first international conference on multi-agent systems (pp. 406–413).Google Scholar
  44. 44.
    Durfee, E. H., & Rosenschein, J. S. (1994). Distributed problem solving and multi-agent systems: Comparisons and examples. In Proceedings of the thirteenth international workshop on distributed artificial intelligence (IWDAI-94) (pp. 94–104).Google Scholar
  45. 45.
    Durkheim, E. (1969). The division of labor in society (Translated by George Simpson). The Free Press, Seventh printing.Google Scholar
  46. 46.
    Farinelli A., Iocchi L., Nardi D. (2004) Multirobot systems: A classification focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 34(5): 2015–2028CrossRefGoogle Scholar
  47. 47.
    Farinelli, A., Iocchi, L., Nardi, D., & Patrizi, F. (2004). Task assignment with dynamic token generation. In Proceedings of the international workshop on monitoring, security, and rescue techniques in multiagent systems (pp. 467–478).Google Scholar
  48. 48.
    Farinelli, A., Scerri, P., & Tambe, M. (2003). Allocating and reallocating roles in very large scale teams. In Proceedings of the first international workshop on synthetic simulation and robotics to mitigate earthquake disaster.Google Scholar
  49. 49.
    Farinelli, A., Scerri, P., & Tambe, M. (2003). Building large-scale robot systems: Distributed role assignment in dynamic, uncertain domains. In Proceedings of the workshop on resources, role and task allocation in multiagent systems (AAMAS 2003).Google Scholar
  50. 50.
    Ferreira, P. R., & Bazzan, A. L. C. (2008). Applying a distributed swarm-based algorithm to solve instances of the RCPSP. In Proceedings of the sixth international conference on ant colony optimization and swarm intelligence (pp. 399–400).Google Scholar
  51. 51.
    Franks N. R. (1986) Teams in social insects: Group retrieval of prey by army ants (Eciton burchelli, Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology 18(6): 425–429CrossRefGoogle Scholar
  52. 52.
    Frias-Martinez, V., & Sklar, E. (2004). A team-based co-evolutionary approach to multi agent learning. In Proceedings of the workshop on learning and evolution in agent based systems (AAMAS 2004).Google Scholar
  53. 53.
    Gage, A., & Murphy, R. R. (2004). Affective recruitment of distributed heterogeneous agents. In Proceedings of the nineteenth national conference on artificial intelligence (pp. 14–19).Google Scholar
  54. 54.
    Gale D. (1960) The theory of linear economic models. McGraw-Hill Book Company, Inc., New YorkGoogle Scholar
  55. 55.
    Gautrais J., Theraulaz G., Deneubourg J.-L., Anderson C. (2002) Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology 215(3): 363–373CrossRefGoogle Scholar
  56. 56.
    Gelenbe E., Schmajuk N., Staddon J., Reif J. (1997) Autonomous search by robots and animals: A survey. Robotics and Autonomous Systems 22(1): 23–34CrossRefGoogle Scholar
  57. 57.
    Georgeff, M. P., & Ingrand, F. F. (1989). Decision-making in an embedded reasoning system. In Proceedings of the eleventh international joint conference on artificial intelligence (pp. 972–978).Google Scholar
  58. 58.
    Georgeff, M. P., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M.(1999). The belief-desire-intention model of agency. In Proceedings of the fifth international workshop on intelligent agents V: Agent theories, architectures, and languages (Vol. 1555, pp. 1–10).Google Scholar
  59. 59.
    Gerkey, B. P., & Matarić, M. J. (2001). Principled communication for dynamic multi-robot task allocation. In D. Rus & S. Singh (Eds.), Experimental robotics VII. Lecture Notes in Control and Information Sciences (Vol. 271, pp. 353–362). Springer.Google Scholar
  60. 60.
    Gerkey B. P., MatarićM. J. (2002) Sold! Market methods for multi-robot coordination. IEEE Transactions on Robotics and Automation 18(5): 758–768CrossRefGoogle Scholar
  61. 61.
    Gerkey, B. P., & Matarić, M. J. (2003). A framework for studying multi-robot task allocation. In Multi-robot systems: From swarms to intelligent automata (Vol. 2, pp. 15–26). Kluwer.Google Scholar
  62. 62.
    Gerkey B. P., Matarić M. J. (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research 23(9): 939–954CrossRefGoogle Scholar
  63. 63.
    Gerkey, B. P., & Matarić, M. J. (2004). On role allocation in RoboCup. In RoboCup 2003: Robot Soccer World Cup VII (pp. 43–53)Google Scholar
  64. 64.
    Goldberg, D., & Matarić, M. J. (1997). Interference as a tool for designing and evaluating multi-robot controllers. In Proceedings of the fourteenth national conference on artificial intelligence and the ninth innovative applications of artificial intelligence conference (pp. 637–642).Google Scholar
  65. 65.
    Gomez F., Miikkulainen R. (1997) Incremental evolution of complex general behavior. Adaptive Behavior 5: 317–342CrossRefGoogle Scholar
  66. 66.
    Grassé P.-P. (1959) La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation des termites constructeurs. Insectes Sociaux 6: 41–81CrossRefGoogle Scholar
  67. 67.
    Hayes, A. T. (2002). How many robots? Group size and efficiency in collective search tasks. In Proceedings of the sixth international symposium on distributed autonomous robotic systems (pp. 289–298).Google Scholar
  68. 68.
    Haynes, T., Sen, S., Schoenefeld, D., & Wainwright, R. (1995). Evolving a team. In Working notes for the AAAI symposium on genetic programming (pp. 23–30).Google Scholar
  69. 69.
    Hecker, J. P., Wu, A. S., Herweg, J. A., & Sciortino, J. C., Jr. (2008). Team-based resource allocation using a decentralized social decision-making paradigm. In Proceedings of the SPIE, evolutionary and bio-inspired computation: Theory and applications II (Vol. 6964, pp. 696409–696417).Google Scholar
  70. 70.
    Ho Y.-C. (1980) Team decision theory and information structures. Proceedings of the IEEE 68(6): 644–654CrossRefGoogle Scholar
  71. 71.
    Horling B., Lesser V. (2005) A survey of multi-agent organizational paradigms. The Knowledge Engineering Review 19(4): 281–316CrossRefGoogle Scholar
  72. 72.
    Hunsberger, L., & Grosz, B. J. (2000). A combinatorial auction for collaborative planning. In Proceedings of the fourth international conference on multiagent systems (pp. 151–158).Google Scholar
  73. 73.
    Iglesias, C. A., Garijo, M., & González, J. C. (1999). A survey of agent-oriented methodologies. In Proceedings of the fifth international workshop on intelligent agents V, agent theories, architectures, and languages (pp. 317–330).Google Scholar
  74. 74.
    Iglesias, C. A., Garijo, M. , González, J. C., & Velasco, J. R. (1997). Analysis and design of multiagent systems using MAS-CommonKADS. In Proceedings of the fourth international workshop on agent theories, architectures, and languages (pp. 313–328).Google Scholar
  75. 75.
    Iocchi, L., Nardi, D., & Salerno, M. (2001). Reactivity and deliberation: A survey on multi-robot systems. In Balancing reactivity and social deliberation in multi-agent systems (pp. 9–32).Google Scholar
  76. 76.
    Jennings N. R. (2000) On agent-based software engineering. Artificial Intelligence 117(2000): 277–296MATHCrossRefGoogle Scholar
  77. 77.
    Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In Proceedings of the sixteenth annual ACM symposium on theory of computing (pp. 302–311).Google Scholar
  78. 78.
    Kendall E. A. (2000) Role modeling for agent system analysis, design, and implementation. IEEE Concurrency 8(2): 34–41CrossRefGoogle Scholar
  79. 79.
    Khachiyan L. G. (1979) A polynomial algorithm in linear programming. Translated in Soviet Mathematics Doklady 20(1): 191–194MATHMathSciNetGoogle Scholar
  80. 80.
    Kim, I.-C. (2006). Dynamic role assignment for multi-agent cooperation. In Proceedings of the twenty-first international symposium on computer and information sciences (pp. 221–229).Google Scholar
  81. 81.
    Kinny, D., & Georgeff, M. (1996). Modelling and design of multi-agent systems. Technical Report 59, Australian Artificial Intelligence Institute, November 1996.Google Scholar
  82. 82.
    Kinny, D., Ljungberg, M., Gil Tidhar, A. R., Werner, E., & Sonenberg, E. (1992). Planned team activity. Technical Report 31, Australian Artificial Intelligence Institute, July 1992.Google Scholar
  83. 83.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., & Osawa, E. (1997). Robocup: The robot world cup initiative. In Proceedings of the first international conference on autonomous agents (pp. 340–347).Google Scholar
  84. 84.
    Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., & Shimada, S. (1999). Robocup rescue: Search and rescue in large-scale disasters as a domain for autonomous agents research. In IEEE international conference on systems, man, and cybernetics (Vol. 6, pp. 739–743).Google Scholar
  85. 85.
    Kittithreerapronchai O., Anderson C. (2003) Do ants paint trucks better than chickens? Markets versus response thresholds for distributed dynamic scheduling. IEEE Congress on Evolutionary Computation 2: 1431–1439Google Scholar
  86. 86.
    Koenig, S., Tovey, C., Zheng, X., & Sungur, I. (2007). Sequential bundle-bid single-sale auction algorithms for decentralized control. In Proceedings of the international joint conference on artificial intelligence (pp. 1359–1365).Google Scholar
  87. 87.
    Kolisch R., Sprecher A. (1997) PSPLIB—a project scheduling problem library. European Journal of Operational Research 96(1): 205–216CrossRefGoogle Scholar
  88. 88.
    Köse, H., Meriçli, Ç., Kaplan, K., & Akin, H. L. (2003). All bids for one and one does for all: Market-driven multi-agent collaboration in robot soccer domain. In Proceedings of the eighteenth international symposium on computer and information sciences (pp. 529–536).Google Scholar
  89. 89.
    K"ose, H., Tatlidede, U., Meriçli, Ç., Kaplan, K., & Akin, H. L. (2004) Q-learning based market-driven multi-agent collaboration in robot soccer. In Proceedings of the Turkish symposium on artificial intelligence and neural networks (pp. 219–228).Google Scholar
  90. 90.
    Krieger M. J. B., Billeter J. B. (2000) The call of duty: Self-organised task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems 30: 65–84CrossRefGoogle Scholar
  91. 91.
    Kristensen, B. B. (1995). Object-oriented modeling with roles. In Proceedings of the second international conference on object-oriented information systems (pp. 57–71).Google Scholar
  92. 92.
    Kuhn H. W. (1955) The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1): 83–97CrossRefMathSciNetGoogle Scholar
  93. 93.
    Labella T. H., Dorigo M., Deneubourg J.-L. (2006) Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems 1(1): 4–25CrossRefGoogle Scholar
  94. 94.
    Lau, H. C., & Zhang, L. (2003). Task allocation via multi-agent coalition formation: Taxonomy, algorithms and complexity. In Proceedings of the fifteenth iEEE international conference on tools with artificial intelligence (pp. 346–350).Google Scholar
  95. 95.
    Lerman K., Jones C. V., Galstyan A., Mataríc M. J. (2006) Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Research 25(3): 225–241CrossRefGoogle Scholar
  96. 96.
    Lesser V. R. (1999) Cooperative multiagent systems: A personal view of the state of the art. IEEE Transactions on Knowledge and Data Engineering 11: 133–142CrossRefGoogle Scholar
  97. 97.
    Levesque, H. J., Cohen, P. R., & Nunes, J. H. T. (1990). On acting together. In Proceedings of the eighth national conference on artificial intelligence (pp. 94–99).Google Scholar
  98. 98.
    Lin, L., & Zheng, Z. (2005). Combinatorial bids based multi-robot task allocation method. In Proceedings of the IEEE international conference on robotics and automation (pp. 1145–1150).Google Scholar
  99. 99.
    Luke, S., Hohn, C., Farris, J., Jackson, G., & Hendler, J. (1997). Co-evolving soccer softbot team coordination with genetic programming. In Proceedings of the first international workshop on RoboCup, at the international joint conference on artificial intelligence (pp. 115–118).Google Scholar
  100. 100.
    Luke, S., & Spector, L. (1996). Evolving teamwork and coordination with genetic programming. In Proceedings of the first annual conference on genetic programming (pp. 150–156).Google Scholar
  101. 101.
    Marecki, J., Gupta, T., Varakantham, P., Tambe, M., & Yokoo, M. (2008). Not all agents are equal: Scaling up distributed POMDPs for agent networks. In Proceedings of the seventh international joint conference on autonomous agents and multiagent systems (pp. 485–492).Google Scholar
  102. 102.
    Markiewicz D. A., O’Donnell S. (2001) Social dominance, task performance and nutrition: Implications for reproduction in eusocial wasps. Journal of Comparative Physiology A 187(5): 327–333CrossRefGoogle Scholar
  103. 103.
    Martinson, E., & Arkin, R. C. (2003). Learning to role-switch in multi-robot systems. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 2727–2734).Google Scholar
  104. 104.
    Matarić, M. J. (1992). Minimizing complexity in controlling a mobile robot population. In Proceedings of the IEEE international conference on robotics and automation (pp. 830–835).Google Scholar
  105. 105.
    Matarić M. J. (1995) Issues and approaches in the design of collective autonomous agents. Robotics and Autonomous Systems 16(2–4): 321–331CrossRefGoogle Scholar
  106. 106.
    McMillen, C., & Veloso, M. (2006). Distributed, play-based role assignment for robot teams in dynamic environments. In Distributed autonomous robotic systems (pp. 145–154).Google Scholar
  107. 107.
    Mech L. D. (1999) Alpha status, dominance, and division of labor in wolf packs. Canadian Journal of Zoology 77: 1196–1203CrossRefGoogle Scholar
  108. 108.
    Morley, R. (1996). Painting trucks at General Motors: The effectiveness of a complexity-based approach. In Embracing Complexity: Exploring the application of complex adaptive systems to business (pp. 53–58), Cambridge, MA. The Ernst & Young Center for Business Innovation.Google Scholar
  109. 109.
    Morley, R., & Schelberg, C. (1993). An analysis of a plant-specific dynamic scheduler. In Proceedings of the NSF workshop on dynamic scheduling (pp. 115–122).Google Scholar
  110. 110.
    Murciano A., Millán J. del R., Zamora J. (1997) Specialization in multi-agent systems through learning. Biological Cybernetics 76: 375–382MATHCrossRefGoogle Scholar
  111. 111.
    Nair R., Tambe M. (2005) Hybrid BDI-POMDP framework for multiagent teaming. Journal of Artificial Intelligence Research 23: 367–420MATHGoogle Scholar
  112. 112.
    Nair, R., Tambe, M., & Marsella, S. (2002). Team formation for reformation in multiagent domains like RoboCupRescue. In RoboCup 2002: Robot Soccer World Cup VI (pp. 150–161).Google Scholar
  113. 113.
    Nair, R., Tambe, M., & Marsella, S. (2003). Role allocation and reallocation in multiagent teams: Towards a practical analysis. In Proceedings of the second international joint conference on autonomous agents and multi-agent systems (pp. 552–559).Google Scholar
  114. 114.
    Nouyan S. (2002) Agent-based approach to dynamic task allocation. Ant Algorithms, Lecture Notes in Computer Science 2463: 28–39CrossRefGoogle Scholar
  115. 115.
    Oliehoek, F. A., Spaan, M. T. J., Whiteson, S., & Vlassis, N. (2008). Exploiting locality of interaction in factored Dec-POMDPs. In Proceedings of the seventh international joint conference on autonomous agents and multiagent systems (pp. 517–524).Google Scholar
  116. 116.
    Oster G. F., Wilson E. O. (1978) Caste and Ecology in the Social Insects. Princeton University Press, Princeton, NJGoogle Scholar
  117. 117.
    Panait L., Luke S. (2005) Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems 11(3): 387–434CrossRefGoogle Scholar
  118. 118.
    Pankiw T., Page R. E. Jr. (2000) Response thresholds to sucrose predict foraging division of labor in honeybees. Journal of Behavioral Ecology and Sociobiology 47(4): 265–267CrossRefGoogle Scholar
  119. 119.
    Parker L. E. (1997) L-ALLIANCE: Task-oriented multi-robot learning in behavior-based systems. Advanced Robotics, Special Issue on Selected Papers from IROS ’96 11(4): 305–322Google Scholar
  120. 120.
    Parker L. E. (1998) ALLIANCE: An architecture for fault-tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation 14(2): 220–240CrossRefGoogle Scholar
  121. 121.
    Parker, L., E. (2000). Current state of the art in distributed autonomous mobile robotics. In Distributed autonomous robotic systems (pp. 3–12).Google Scholar
  122. 122.
    Pernici, B. (1990). Objects with roles. In Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on office information systems (pp. 205–215).Google Scholar
  123. 123.
    Picault, S., & Collinot, A. (1998). Designing social cognition models for multi-agent systems through simulating primate societies. In Proceedings of the third international conference on multiagent systems (pp. 238–245).Google Scholar
  124. 124.
    Platon E., Mamei M., Sabouret N., Honiden S., Van Dyke Parunak H. (2007) Mechanisms for environments in multi-agent systems: Survey and opportunities. Autonomous Agents and Multi-Agent Systems 14(1): 31–47CrossRefGoogle Scholar
  125. 125.
    Playne, D. P. (2008). Knowledge-based role allocation in robot soccer. In Proceedings of the tenth international conference on control, automation, robotics and vision (pp. 1616–1619).Google Scholar
  126. 126.
    Potter M. A., De Jong K. A. (2000) Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1): 1–29CrossRefGoogle Scholar
  127. 127.
    Pynadath, D. V., & Tambe, M. (2002). Multiagent teamwork: Analyzing the optimality and complexity of key theories and models. In Proceedings of the first international joint conference on autonomous agents and multiagent systems (pp. 873–880).Google Scholar
  128. 128.
    Pynadath D. V., Tambe M. (2003) An automated teamwork infrastructure for heterogeneous software agents and humans. Autonomous Agents and Multi-Agent Systems 7: 71–100CrossRefGoogle Scholar
  129. 129.
    Pynadath D. V., Tambe M., Chauvat N., Cavedon L. (2000) Toward team-oriented programming. Intelligent Agents VI 1757: 233–247Google Scholar
  130. 130.
    Quinn, M., Smith, L., Mayley, G., & Husbands, P. (2002). Evolving teamwork and role allocation with real robots. In Proceedings of the eighth international conference on the simulation and synthesis of living systems (pp. 302–311).Google Scholar
  131. 131.
    Ravary F., Lecoutey E., Kaminski G., Châline N., Jaisson P. (2007) Individual experience alone can generate lasting division of labor in ants. Current Biology 17: 1308–1312CrossRefGoogle Scholar
  132. 132.
    Robinson G. E. (1992) Regulation of division-of-labor in insect societies. Annual Review of Entomology 37: 637–665CrossRefGoogle Scholar
  133. 133.
    Rodrigues da Silva A., Romão A., Deugo D., Mira da Silva M. (2001) Towards a reference model for surveying mobile agent systems. Autonomous Agents and Multi-Agent Systems 4(3): 187–231CrossRefGoogle Scholar
  134. 134.
    Rouff, C., Vanderbilt, A., Hinchey, M., Truszkowski, W., & Rash, J. (2004). Properties of a formal method for prediction of emergent behaviors in swarm-based systems. In Proceedings of the second international conference on software engineering and formal methods (pp. 24–33).Google Scholar
  135. 135.
    Scerri, P., Farinelli, A., Okamoto, S., & Tambe, M. (2004). Allocating roles in extreme teams. In Proceedings of the third international joint conference on autonomous agents and multiagent systems (pp. 1502–1503).Google Scholar
  136. 136.
    Scerri, P., Farinelli, A., Okamoto, S., & Tambe, M. (2004). Token approach for role allocation in extreme teams: Analysis and experimental evaluation. In Proceedings of the second IEEE international workshop on theory and practice of open computational systems.Google Scholar
  137. 137.
    Scerri, P., Farinelli, A., Okamoto, S., & Tambe, M. (2005). Allocating tasks in extreme teams. In Proceedings of the fourth international joint conference on autonomous agents and multiagent systems (pp. 727–734).Google Scholar
  138. 138.
    Scerri, P., Pynadath, D., Johnson, L., Rosenbloom, P., Si, M., Schurr, N., & Tambe, M.(2003). A prototype infrastructure for distributed robot-agent-person teams. In Proceedings of the second international joint conference on autonomous agents and multiagent systems (pp. 433–440).Google Scholar
  139. 139.
    Schneider-Fontan M., Matarić M. J. (1998) Territorial multi-robot task division. IEEE Transactions of Robotics and Automation 14(5): 815–822CrossRefGoogle Scholar
  140. 140.
    Seeley T. D. (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Journal of Behavioral Ecology and Sociobiology 11(4): 287–293CrossRefGoogle Scholar
  141. 141.
    Seyfried J., Szymanski M., Bender N., Estaña R., Thiel M., Wörn H. (2005) The I-SWARM project: Intelligent small world autonomous robots for micro-manipulation. Swarm Robotics 3342: 70–83CrossRefGoogle Scholar
  142. 142.
    Shehory, O., & Kraus, S. (1995). Task allocation via coalition formation among autonomous agents. In Proceedings of the international joint conferences on artificial intelligence (pp. 655–661).Google Scholar
  143. 143.
    Shoham Y. (1993) Agent-oriented programming. Artificial Intelligence 60: 51–92CrossRefMathSciNetGoogle Scholar
  144. 144.
    Smith R. G. (1980) The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers C-29(12): 1104–1113CrossRefGoogle Scholar
  145. 145.
    Stanley K. O. (2007) Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Machines, Special Issue on Developmental Systems 8(2): 131–162CrossRefMathSciNetGoogle Scholar
  146. 146.
    Stanley K. O., Bryant B. D., Miikkulainen R. (2005) Real-time neuroevolution in the NERO video game. IEEE Transactions on Evolutionary Computation 9(6): 653–668CrossRefGoogle Scholar
  147. 147.
    Stanley K.O., D’Ambrosio D.B., Gauci J. (2009) A hypercube-based indirect encoding for evolving large-scale neural networks. Artificial Life 15(2): 185–212CrossRefGoogle Scholar
  148. 148.
    Stanley K. O., Miikkulainen R. (2002) Evolving neural networks through augmenting topologies. Evolutionary Computation 10: 99–127CrossRefGoogle Scholar
  149. 149.
    Stone, P., Kuhlmann, G., Taylor, M. E., & Liu, Y. (2006). Keepaway soccer: From machine learning testbed to benchmark. In: I. Noda, A. Jacoff, A. Bredenfeld, & Y. Takahashi (Eds.), RoboCup-2005: Robot Soccer World Cup IX (Vol. 4020, pp. 93–105).Google Scholar
  150. 150.
    Stone P., Veloso M. (2000) Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 8(3): 345–383CrossRefGoogle Scholar
  151. 151.
    Stone, P., & Veloso, M. M. (1998). Task decomposition and dynamic role assignment for real-time strategic teamwork. In Proceedings of the fifth international workshop on intelligent agents V, agent theories, architectures, and languages (pp. 293–308).Google Scholar
  152. 152.
    Sycara, K., & Sukthankar, G. (2006). Literature review of teamwork models. Technical Report CMU-RI-TR-06-50, Robotics Institute, Carnegie Mellon University, November 2006.Google Scholar
  153. 153.
    ’t Hoen, P. J., & de Jong, E. D. (2004). Evolutionary multi-agent systems. In Proceedings of the eighth international conference on parallel problem solving from nature (pp. 872–881).Google Scholar
  154. 154.
    Tambe M. (1997) Towards flexible teamwork. Journal of Artificial Intelligence Research 7: 83–124Google Scholar
  155. 155.
    Tambe M., Pynadath D. V., Chauvat N. (2000) Building dynamic agent organizations in cyberspace. IEEE Internet Computing 4(2): 65–73CrossRefGoogle Scholar
  156. 156.
    Theraulaz G., Bonabeau E., Deneubourg J.-L. (1998) Response threshold reinforcements and division of labour in insect societies. Proceedings Royal Society of London B 265(1393): 327–332CrossRefGoogle Scholar
  157. 157.
    Theraulaz G., Bonbeau E. (1999) A brief history of stigmergy. Artificial Life 5(2): 97–116CrossRefGoogle Scholar
  158. 158.
    Tidhar, G. (1993). Team-oriented programming: Preliminary report. Technical Report 41, Australian Artificial Intelligence Institute, April 1993.Google Scholar
  159. 159.
    Tidhar, G., Rao, A. S., & Sonenberg, E. A. (1996). Guided team selection. In Proceedings of the second international conference on multi-agent systems (pp. 369–376).Google Scholar
  160. 160.
    Truszkowski, W., Rash, J., Rouff, C., & Hinchey, M. (2004). Asteroid exploration with autonomic systems. In Proceedings of the eleventh IEEE international conference and workshop on the engineering of computer-based systems (pp. 484–489).Google Scholar
  161. 161.
    Vail, D., & Veloso, M. (2003). Dynamic multi-robot coordination. In Multi-Robot Systems: From swarms to intelligent automata (Vol. 2, pp. 87–100).Google Scholar
  162. 162.
    VanHilst, M., & Notkin, D. (1996). Using role components to implement collaboration-based designs. In Proceedings of the conference on object-oriented programming systems, languages, and applications (pp. 359–369).Google Scholar
  163. 163.
    Varakantham, P., Kwak, J. y., Taylor, M. E., Marecki, J., Scerri, P., & Tambe, M. (2009). Exploiting coordination locales in distributed POMDPs via social model shaping. In Proceedings of the nineteenth international conference on automated planning and scheduling.Google Scholar
  164. 164.
    Vinyals, M., Rodríguez-Aguilar, J. A., & Cerquides, J. (2008). A survey on sensor networks from a multi-agent perspective. In Proceedings of the second international workshop on agent technology for sensor networks.Google Scholar
  165. 165.
    von Neumann J., Morgenstern O. (1944) Theory of Games and Economic Behavior. Princeton University Press, New YorkMATHGoogle Scholar
  166. 166.
    Wagner I. A., Altshuler Y., Yanovski V., Bruckstein A. M. (2008) Cooperative cleaners: A study in ant robotics. The International Journal of Robotics Research 27(1): 127–151CrossRefGoogle Scholar
  167. 167.
    Wang, T., Liu, J., & Jin, X. (2004). Minority game strategies in dynamic multi-agent role assignment. In Proceedings of the international conference on intelligent agent technology (pp. 316–322).Google Scholar
  168. 168.
    Wiegand, R. P. (2004). An analysis of cooperative coevolutionary algorithms. PhD thesis, George Mason University, Fairfax, VA.Google Scholar
  169. 169.
    Wooldridge, M., & Ciancarini, P. (2000). Agent-oriented software engineering: The state of the art. In Proceedings of the first international workshop on agent-oriented software engineering (pp. 1–28).Google Scholar
  170. 170.
    Wooldridge, M., Jennings, N. R., & Kinny, D. (1999). A methodology for agent-oriented analysis and design. In Proceedings of the third annual conference on autonomous agents (pp. 69–76).Google Scholar
  171. 171.
    Wooldridge M., Jennings N. R., Kinny D. (2000) The Gaia methodology for agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3: 285–312CrossRefGoogle Scholar
  172. 172.
    Yan, Q., Mao, X.-J., han, L.-J., & Qi, Z.-C. (2003). Soft gene, role, agent: MABS learns from sociology. In Proceedings of the IEEE/WIC international conference on intelligent agent technology (pp. 450–453).Google Scholar
  173. 173.
    Yanai, K., & Iba, H.(2001). Multi-agent robot learning by means of genetic programming: Solving an escape problem. InProceedings of the fourth international conference evolvable systems: From biology to hardware (pp. 192–203).Google Scholar
  174. 174.
    Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu, D., & Volz, R. A. (2001). CAST: Collaborative agents for simulating teamwork. In Proceedings of the seventeenth international conference on artificial intelligence (pp. 1135–1144).Google Scholar
  175. 175.
    Han Yong, C., & Miikkulainen, R. (2007). Coevolution of role-based cooperation in multi-agent systems. Technical Report AI07-338, Department of Computer Sciences, The University of Texas at Austin.Google Scholar
  176. 176.
    Yu X., Ram B. (2006) Bio-inspired scheduling for dynamic job shops with flexible routing and sequence-dependent setups. International Journal of Production Research 44(22): 4793–4813MATHCrossRefGoogle Scholar
  177. 177.
    Zlot R. M., Stentz A. (2006) Market-based multirobot coordination for complex tasks. International Journal of Robotics Research, Special Issue on the Fourth International Conference on Field and Service Robotics 25(1): 73–101Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.University of Central FloridaOrlandoUSA

Personalised recommendations