Autonomous Agents and Multi-Agent Systems

, Volume 22, Issue 1, pp 183–199 | Cite as

Manipulation complexity and gender neutrality in stable marriage procedures

  • Maria Silvia Pini
  • Francesca Rossi
  • K. Brent Venable
  • Toby Walsh
Article

Abstract

The stable marriage problem is a well-known problem of matching men to women so that no man and woman who are not married to each other both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors, to hospitals to matching students to schools. A well-known algorithm to solve this problem is the Gale–Shapley algorithm, which runs in quadratic time in the number of men/women. It has been proven that stable marriage procedures can always be manipulated. Whilst the Gale–Shapley algorithm is computationally easy to manipulate, we prove that there exist stable marriage procedures which are NP-hard to manipulate. We also consider the relationship between voting theory and stable marriage procedures, showing that voting rules which are NP-hard to manipulate can be used to define stable marriage procedures which are themselves NP-hard to manipulate. Finally, we consider the issue that stable marriage procedures like Gale–Shapley favour one gender over the other, and we show how to use voting rules to make any stable marriage procedure gender neutral.

Keywords

Computational social choice Stable marriage problems Manipulation Voting theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow K. J., Sen A. K., Suzumura K. (2002) Handbook of social choice and welfare. Elsevier, North HollandGoogle Scholar
  2. 2.
    Bartholdi J., Orlin J. (1991) Single transferable vote resists strategic voting. Social Choice and Welfare 8(4): 341–354MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bartholdi J. J., Tovey C. A., Trick M. A. (1989) The computational difficulty of manipulating an election. Social Choice and Welfare 6(3): 227–241MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Conitzer, V., & Sandholm, T. (2003). Universal voting protocol tweaks to make manipulation hard. In Proceedings of the IJCAI’03, pp. 781–788.Google Scholar
  5. 5.
    Conitzer, V., & Sandholm, T. (2006). Nonexistence of voting rules that are usually hard to manipulate. In Proceedings of the AAAI’06, AAAI Press.Google Scholar
  6. 6.
    Demange G., Gale D., Sotomayor M. (1987) A further note on the stable matching problem. Discrete Applied Mathematics 16: 217–222MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dubins L., Freedman D. (1981) Machiavelli and the Gale–Shapley algorithm. American Mathematical Monthly 88: 485–494MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gale D., Shapley L. S. (1962) College admissions and the stability of marriage. American Mathematical Monthly 69: 9–14MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gale D., Sotomayor M. (1985) Some remarks on the stable matching problem. Discrete Applied Mathematics 11: 223–232MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gale D., Sotomayor M. (1985) Machiavelli and the stable matching problem. American Mathematical Monthly 92: 261–268MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gibbard A. (1973) Manipulation of voting schemes: A general result. Econometrica 41(3): 587–601MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gusfield D., Irving R. W. (1989) The stable marriage problem: Structure and algorithms. MIT Press, Boston MassMATHGoogle Scholar
  13. 13.
    Gusfield, D. (1987). Three fast algorithms for four problems in stable marriage. SIAM Journal of Computing, 16(1).Google Scholar
  14. 14.
    Huang, C.-C. (2006). Cheating by men in the Gale–Shapley stable matching algorithm. In Proceedings of the ESA’06, pp. 418-431, Springer-Verlag.Google Scholar
  15. 15.
    Irving R.W., Leather P., Gusfield D. (1987) An efficient algorithm for the “optimal” stable marriage. JACM 34(3): 532–543CrossRefMathSciNetGoogle Scholar
  16. 16.
    Klaus B., Klijin F. (2006) Procedurally fair and stable matching. Economic Theory 27: 431–447MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Knuth, D. E. (1976). Mariages stables et leurs relations avec d’autres problèmes combinatoires. (French) Introduction à l’analyse mathématique des algorithmes. Collection de la Chaire Aisenstadt. Les Presses de l’Université de Montréal, Montreal, Que.Google Scholar
  18. 18.
    Kobayashi, H., & Matsui, T. (2008). Successful manipulation in stable marriage model with complete preference lists. In Proceedings of the MATCH-UP workshop: A satellite workshop of ICALP’08, pp. 17–22.Google Scholar
  19. 19.
    Liebowitz J., Simien J. (2005) Computational efficiencies for multi-agents: A look at a multi-agent system for sailor assignment. Electronic Government: An International Journal 2(4): 384–402CrossRefGoogle Scholar
  20. 20.
    Masarani F. Gokturk S.S. (1989) On the existence of fair matching algorithms. Theory and Decision 26: 305–322 KluwerMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Procaccia A. D., Rosenschein J. S. (2007) Junta distributions and the average-case complexity of manipulating elections. JAIR 28: 157–181MATHMathSciNetGoogle Scholar
  22. 22.
    Roth A. (1982) The economics of matching: Stability and incentives. Mathematics of Operations Research 7: 617–628MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Roth A. (1984) The evolution of the labor market for medical interns and residents: A case study in game theory. Journal of Political Economy 92: 991–1016CrossRefGoogle Scholar
  24. 24.
    Roth A. (2008) Deferred acceptance algorithms: History, theory, practice, and open questions. International Journal of Game Theory, Special Issue in Honor of David Gale on his 85th birthday 85: 537–569Google Scholar
  25. 25.
    Roth A., Sotomayor M. (1990) Two-sided matching: A study in game-theoretic modeling and analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  26. 26.
    Roth A., Vande Vate J. H. (1991) Incentives in two-sided matching with random stable mechanisms. In Economic Theory 1(1): 31–44MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Satterthwaite M. A. (1975) Strategy-proofness and arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare function. Economic Theory 10(3): 187–217MATHMathSciNetGoogle Scholar
  28. 28.
    Teo C.-P., Sethuraman J., Tan W.-P. (2001) Gale–Shapley stable marriage problem revisited: Strategic issues and applications. Management Science 47(9): 1252–1267CrossRefGoogle Scholar
  29. 29.
    Walsh, T. (2009). Where are the really hard manipulation problems? The phase transition in manipulating the veto rule. In Proceedings of the IJCAI’09, pp. 324–329.Google Scholar
  30. 30.
    Xia, L., Conitzer, V. (2008). Generalized scoring rules and the frequency of coalitional manipulability. In Proceeding of the ACM conference on electronic commerce 2008, pp. 109-118, ACM Press.Google Scholar
  31. 31.
    Zuckerman M., Procaccia A. D., Rosenschein J. S. (2009) Algorithms for the coalitional manipulation problem. Artificial Intelligence 173(2): 392–412MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Maria Silvia Pini
    • 1
  • Francesca Rossi
    • 1
  • K. Brent Venable
    • 1
  • Toby Walsh
    • 2
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità di PadovaPaduaItaly
  2. 2.NICTA and UNSWSydneyAustralia

Personalised recommendations