Autonomous Agents and Multi-Agent Systems

, Volume 21, Issue 2, pp 143–171 | Cite as

Resource allocation in decentralised computational systems: an evolutionary market-based approach



We present a novel market-based method, inspired by retail markets, for resource allocation in fully decentralised systems where agents are self-interested. Our market mechanism requires no coordinating node or complex negotiation. The stability of outcome allocations, those at equilibrium, is analysed and compared for three buyer behaviour models. In order to capture the interaction between self-interested agents, we propose the use of competitive coevolution. Our approach is both highly scalable and may be tuned to achieve specified outcome resource allocations. We demonstrate the behaviour of our approach in simulation, where evolutionary market agents act on behalf of service providing nodes to adaptively price their resources over time, in response to market conditions. We show that this leads the system to the predicted outcome resource allocation. Furthermore, the system remains stable in the presence of small changes in price, when buyers’ decision functions degrade gracefully.


Decentralised systems Market-based control Coevolution Load balancing Resource allocation Self-interested agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfano, R., & Caprio, G. D. (2006). TURBO: An autonomous execution environment with scalability and load balancing features. In Proceedings of the IEEE workshop on distributed intelligent systems: Collective intelligence and its applications (DISG06) (pp. 377–382).Google Scholar
  2. 2.
    Anderson E. J., Cau T. D. H. (2009) Modeling implicit collusion using coevolution. Operations Research 57(2): 439–455MATHCrossRefGoogle Scholar
  3. 3.
    Ardaiz O., Artigas P., Eymann T., Freitag F., Navarro L., Reinicke M. (2006) The catallaxy approach for decentralized economic-based allocation in grid resource and service markets. Applied Intelligence 25(2): 131–145CrossRefGoogle Scholar
  4. 4.
    Axelrod R. (1987) The evolution of strategies in the iterated prisoners dilemma. In: Davis L. (eds) Genetic algorithms and simulated annealing. Pittman, London, pp 32–41Google Scholar
  5. 5.
    Brewer E. A. (2001) Lessons from giant-scale services. IEEE Internet Computing 5(4): 46–55CrossRefGoogle Scholar
  6. 6.
    Bridgewater, J. S. A., Boykin, P. O., & Roychowdhury, V. P. (2007). Balanced overlay networks (BON): An overlay technology for decentralized load balancing. IEEE transactions on parallel and distributed systems (pp. 1122–1133).Google Scholar
  7. 7.
    Buyya R., Abramson D., Giddy J., Stockinger H. (2002) Economic models for resource management and scheduling in grid computing. Concurrency and Computation: Practice and Experience 14(13–15): 1507–1542MATHCrossRefGoogle Scholar
  8. 8.
    Byde, A. (2003). Applying evolutionary game theory to auction mechanism design. In IEEE international conference on e-commerce (pp. 347–354).Google Scholar
  9. 9.
    Cao J., Spooner D. P., Jarvis S. A., Nudd G. R. (2005) Grid load balancing using intelligent agents. Future Generation Computer Systems 21(1): 135–149CrossRefGoogle Scholar
  10. 10.
    Cardellini V., Colajanni M., Yu P. S. (1999) Dynamic load balancing on web server systems. IEEE Internet Computing 3(3): 28–39CrossRefGoogle Scholar
  11. 11.
    Casavant T. L., Kuhl J. G. (1988) A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Transactions on Software Engineering 14(2): 141–154CrossRefGoogle Scholar
  12. 12.
    Chang R., Guo M., Lin H. (2008) A multiple parallel download scheme with server throughput and client bandwidth considerations for data grids. Future Generation Computer Systems 24(8): 798–805CrossRefGoogle Scholar
  13. 13.
    Chavez, A., Moukas, A., & Maes, P. (1997). Challenger: A multi-agent system for distributed resource allocation. In Proceedings of the first international conference on autonomous agents.Google Scholar
  14. 14.
    Clearwater, S. H. (Ed.). (1996). Market-based control: A paradigm for distributed resource allocation. Singapore: World Scientific.Google Scholar
  15. 15.
    Cliff D. (2003) Explorations in evolutionary design of online auction market mechanisms. Journal of Electronic Commerce Research and Applications 2(2): 162–175CrossRefMathSciNetGoogle Scholar
  16. 16.
    Cliff, D., & Bruten, J. (1998). Simple bargaining agents for decentralized market-based control. Tech. Rep. HPL-98-17. Bristol, UK: HP Laboratories.Google Scholar
  17. 17.
    Cliff, D., & Bruten, J. (1998). Shop til you drop I: Market trading interactions as adaptive behavior. Tech. Rep. HPL-98-58. Bristol, UK: HP Labs.Google Scholar
  18. 18.
    Eiben A. E., Smith J. E. (2003) Introduction to evolutionary computing. Springer, HeidelbergMATHGoogle Scholar
  19. 19.
    Esteva, M., & Padget, J. (2000). Auctions without auctioneers: Distributed auction protocols. In Lecture notes in artificial intelligence (vol. 1788, chap. II, pp. 20–28). Berlin, Germany: Springer.Google Scholar
  20. 20.
    Eugster P., Guerraoui R., Kermarrec A., Massoulie L. (2004) Epidemic information disseation in distributed systems. Computer 37(5): 60–67CrossRefGoogle Scholar
  21. 21.
    Eymann, T. (2001). Co-evolution of bargaining strategies in a decentralized multi-agent system. In AAAI fall 2001 symposium on negotiation methods for autonomous cooperative systems.Google Scholar
  22. 22.
    Eymann, T., Padovan, B., & Schoder, D. (2000). The catallaxy as a new paradigm for the design of information systems. In Proceedings of the 16th world computer congress of the international federation for information processing.Google Scholar
  23. 23.
    Eymann, T., Reinicke, M., Ardaiz, O., Artigas, P., de Cerio, F., Freitag, L. D., et al. (2004). Decentralized vs. centralized economic coordination of resource allocation in grids. Lecture Notes in Computer Science 9–16.Google Scholar
  24. 24.
    Eymann, T., Reinickke, M., Ardaiz, O., Artigas, P., Freitag, F., & Navarro, L. (2003). Self-organizing resource allocation for autonomic networks. In Database and expert systems applications, 2003. Proceedings of the 14th international workshop on (pp. 656–660).Google Scholar
  25. 25.
    Gjerstad S., Dickhaut J. (1998) Price formation in double auctions. Games and Economic Behavior 22(1): 1–29MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Greenwalt A. R., Kephart J. O. (1999) Shopbots and pricebots. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence 1: 506–511Google Scholar
  27. 27.
    Gupta A., Stahl D. O., Whinston A. B. (1999) The economics of network management. Communications of the ACM 42(9): 57–63CrossRefGoogle Scholar
  28. 28.
    Hausheer, D., & Stiller, B. (2005). Peermart: The technology for a distributed auction-based market for peer-to-peer services. In Proceedings of the IEEE international conference on communications (vol. 3, pp. 1583–1587).Google Scholar
  29. 29.
    He M., Jennings N. R., Leung H. F. (2003) On agent-mediated electronic commerce. IEEE Transactions on Knowledge and Data Engineering 15(4): 985–1003CrossRefGoogle Scholar
  30. 30.
    Jagannathan S., Almeroth K. C. (2002) Price issues in delivering e-content on-demand. ACM SIGecom Exchanges 3(2): 18–27CrossRefGoogle Scholar
  31. 31.
    Ketcham J., Smith V. L., Williams A. W. (1984) A comparison of posted-offer and double-auction pricing institutions. The Review of Economic Studies 51(4): 595–614CrossRefGoogle Scholar
  32. 32.
    Khan, S. U., & Ahmad, I. (2006). Non-cooperative, semi-cooperative, and cooperative games-based grid resource allocation. In 20th international parallel and distributed processing symposium (p. 10).Google Scholar
  33. 33.
    Kikuchi, H., Hotta, S., Abe, K., & Nakanishi, S. (2000). Distributed auction servers resolving winner and winning bid without revealing privacy of bids. In Proceedings of the seventh international conference on parallel and distributed systems: Workshops (p. 307). Washington, DC, USA: IEEE Computer SocietyGoogle Scholar
  34. 34.
    Kuwabara K., Ishida T., Nishibe Y., Suda T. (1996) An equilibratory market-based approach for distributed resource allocation and its applications to communication network control. In: Clearwater S. H. (eds) Market-based control: A paradigm for distributed resource allocation. World Scientific, Singapore, pp 53–73Google Scholar
  35. 35.
    Lai K. (2005) Markets are dead, long live markets. ACM SIGecom Exchanges 5(4): 1–10CrossRefGoogle Scholar
  36. 36.
    Lewis, P. R., Marrow, P., & Yao, X. (2008). Evolutionary market agents for resource allocation in decentralised systems. In Parallel problem solving from nature—PPSN X, Lecture Notes in Computer Science (vol. 5199, pp. 1071–1080). New York: Springer.Google Scholar
  37. 37.
    Lewis, P. R., Marrow, P., & Yao, X. (2009). Evolutionary market agents and heterogeneous service providers: Achieving desired resource allocations. In Proceedings of the IEEE congress on evolutionary computation (pp. 904–910).Google Scholar
  38. 38.
    Mas-Colell A., Whinston M. D., Green J. R. (1995) Micro-economic theory. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Niu, J., Cai, K., Parsons, S., Gerding, E., McBurney, P., Moyaux, T., et al. (2008). JCAT: A platform for the TAC market design competition. In Proceedings of the 7th international joint conference on autonomous agents and multiagent systems: Demo papers (pp. 1649–1650). International Foundation for Autonomous Agents and Multiagent Systems.Google Scholar
  40. 40.
    Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2006). Service-oriented computing: Research roadmap. Accessed January 2009
  41. 41.
    Phelps S., McBurney P., Parsons S., Sklar E. (2002) Co-evolutionary auction mechanism design: A preliminary report. Lecture Notes in Computer Science 2531: 123–142CrossRefGoogle Scholar
  42. 42.
    Phelps, S., Parsons, S. D., & McBurney, P. (2004). An evolutionary game-theoretic comparision of two double-auction market designs. In Proceedings of the 6th workshop on agent mediated electronic commerce. New York, NY, USA.Google Scholar
  43. 43.
    Plott C. R., Smith V. L. (1978) An experimental examination of two exchange institutions. The Review of Economic Studies 45: 133–153CrossRefGoogle Scholar
  44. 44.
    Price T. C. (1997) Using co-evolutionary programming to simulate strategic behaviour in markets. Journal of Evolutionary Economics 7(3): 219–254CrossRefGoogle Scholar
  45. 45.
    Ramasubramanian, V., & Sirer, E. G. (2005). Perils of transitive trust in the domain name system. Tech. Rep. TR2005-1994, Ithaca, New York, USA: Cornell University.Google Scholar
  46. 46.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Schenker, S. (2001). A scalable content-addressable network. In Proceedings of the 2001 SIGCOMM conference (vol. 31, pp. 161–172).Google Scholar
  47. 47.
    Ripeanu, M., & Foster, I. (2001). Peer-to-peer architecture case study: Gnutella network. In Proceedings of international conference on peer-to-peer computing (vol. 101).Google Scholar
  48. 48.
    Rodriguez P., Biersack E. W. (2002) Dynamic parallel access to replicated content in the internet. IEEE/ACM Transactions on Networking 10(4): 455–465CrossRefGoogle Scholar
  49. 49.
    Roth A. E., Erev I. (1995) Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term. Games and economic behavior 8(1): 164–212MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Singh M. P., Huhns M. N. (2005) Service-oriented computing: Semantics, processes, agents. Wiley, Chichester, West SussexGoogle Scholar
  51. 51.
    Son Y. S., Baldick R. (2004) Hybrid coevolutionary programming for nash equilibrium search in games with local optima. IEEE Transactions on Evolutionary Computation 8(4): 305–315CrossRefGoogle Scholar
  52. 52.
    Surana S., Godfrey B., Lakshminarayanan K., Karp R., Stoica I. (2006) Load balancing in dynamic structured peer-to-peer systems. Performance Evaluation 63(3): 217–240CrossRefGoogle Scholar
  53. 53.
    Tesfatsion L., Judd K. (2006) Handbook of computational economics. Elsevier, AmsterdamMATHGoogle Scholar
  54. 54.
    Waldspurger C., Hogg T., Huberman B., Kephart J., Stornetta W. (1992) Spawn: A distributed computational economy. IEEE Transactions on Software Engineering 18(2): 103–117CrossRefGoogle Scholar
  55. 55.
    Walia, V., Byde, A., & Cliff, D. (2003). Evolving market design in zero-intelligence trader markets. In Proceedings of the IEEE international conference on e-commerce (pp. 157–163). IEEE Computer Society.Google Scholar
  56. 56.
    Wolski R., Plank J., Brevik J., Bryan T. (2001) Analyzing market-based resource allocation strategies for the computational grid. International Journal of High Performance Computing Applications 15(3): 258CrossRefGoogle Scholar
  57. 57.
    Xiao, L., Zhu, Y., Ni, L. M., & Xu, Z. (2005). GridIS: An incentive-based grid scheduling. In Proceedings of the 19th IEEE international parallel and distributed processing symposium (p. 65b).Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK
  2. 2.BT plcIpswichUK

Personalised recommendations